Advertisements
Advertisements
प्रश्न
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
उत्तर
Given equation are,
x - 2y = 10 ...(i)
2x + y + 3z = 8 ...(ii)
-2y + z = 7 ...(iii)
Let A = `|[ 1, -2, 0],[2, 1, 3],[0, -2, 1]|, X = |[x], [y], [z]|, B = |[10], [8], [7]|`
`|"A"|` = 1 (1 + 6) + 2(2 - 0) + 0
= 7 + 4 = 11 ≠ 0
∴ A-1 exists
`a_11 = |[1, 3],[-2,1]| = (1 +6) = 7, a_12 = |[2, 3],[0,1]| =-2, a_13 = |[2,1],[0 ,-2]| = -4`
`a_21 = |[-2, 0],[-2,1]| = -(-2) = 2, a_22 = |[1, 0],[0,1]| =1, a_23 = -|[1,-2],[ 0,-2]| = -(-2) = 2`
`a_31 = |[-2, 0],[1,3]| = -6 , a_32 = -|[1, 0],[2,3]| =(-3)= - 3, a_33 = |[1,-2],[ 2,1]| = 1 + 4 = 5`
∴ adj A = `|[7, -2 , -4], [2, 1, 2],[-6, -3, 5]|^T`
= `|[7, 2 , -6], [-2, 1, -3],[-4, 2, 5]|`
∴ A -1 = `(1)/|"A"|. "adj" "A"`
= `(1)/(11) |[7, 2, -6],[-2, 1, -3], [-4, 2, 5]|`
Now. AX = B ⇒ X = A -1 B
`|[ x],[y],[z]| = (1)/(11) |[7, 2, -6],[-2, 1, -3], [-4, 2, 5]| |[10], [8], [7]|`
`|[ x],[y],[z]| = (1)/(11) |[ 70+ 16 -42],[-20 + 8 -21], [-40 + 16 + 35]|`
= `(1)/(11) |[ 44],[-33],[11]|`
Here, x = 4, y = -3, z = 1
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
For the matrix
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.