Advertisements
Advertisements
Question
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
Solution
Given equation are,
x - 2y = 10 ...(i)
2x + y + 3z = 8 ...(ii)
-2y + z = 7 ...(iii)
Let A = `|[ 1, -2, 0],[2, 1, 3],[0, -2, 1]|, X = |[x], [y], [z]|, B = |[10], [8], [7]|`
`|"A"|` = 1 (1 + 6) + 2(2 - 0) + 0
= 7 + 4 = 11 ≠ 0
∴ A-1 exists
`a_11 = |[1, 3],[-2,1]| = (1 +6) = 7, a_12 = |[2, 3],[0,1]| =-2, a_13 = |[2,1],[0 ,-2]| = -4`
`a_21 = |[-2, 0],[-2,1]| = -(-2) = 2, a_22 = |[1, 0],[0,1]| =1, a_23 = -|[1,-2],[ 0,-2]| = -(-2) = 2`
`a_31 = |[-2, 0],[1,3]| = -6 , a_32 = -|[1, 0],[2,3]| =(-3)= - 3, a_33 = |[1,-2],[ 2,1]| = 1 + 4 = 5`
∴ adj A = `|[7, -2 , -4], [2, 1, 2],[-6, -3, 5]|^T`
= `|[7, 2 , -6], [-2, 1, -3],[-4, 2, 5]|`
∴ A -1 = `(1)/|"A"|. "adj" "A"`
= `(1)/(11) |[7, 2, -6],[-2, 1, -3], [-4, 2, 5]|`
Now. AX = B ⇒ X = A -1 B
`|[ x],[y],[z]| = (1)/(11) |[7, 2, -6],[-2, 1, -3], [-4, 2, 5]| |[10], [8], [7]|`
`|[ x],[y],[z]| = (1)/(11) |[ 70+ 16 -42],[-20 + 8 -21], [-40 + 16 + 35]|`
= `(1)/(11) |[ 44],[-33],[11]|`
Here, x = 4, y = -3, z = 1
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
prove that \[A^{- 1} = A^3\]
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.