Advertisements
Advertisements
Question
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Solution
\[ A = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}4 & 3 \\ 3 & 4\end{vmatrix} = 7, C_{12} = - \begin{vmatrix}1 & 3 \\ 1 & 4\end{vmatrix} = - 1\text{ and }C_{13} = \begin{vmatrix}1 & 4 \\ 1 & 3\end{vmatrix} = - 1\]
\[ C_{21} = - \begin{vmatrix}3 & 3 \\ 3 & 4\end{vmatrix} = - 3, C_{22} = \begin{vmatrix}1 & 3 \\ 1 & 4\end{vmatrix} = 1\text{ and }C_{23} = - \begin{vmatrix}1 & 3 \\ 1 & 3\end{vmatrix} = 0\]
\[ C_{31} = \begin{vmatrix}3 & 3 \\ 4 & 3\end{vmatrix} = - 3, C_{32} = - \begin{vmatrix}1 & 3 \\ 1 & 3\end{vmatrix} = 0\text{ and }C_{33} = \begin{vmatrix}1 & 3 \\ 1 & 4\end{vmatrix} = 1\]
\[adjA = \begin{bmatrix}7 & - 1 & - 1 \\ - 3 & 1 & 0 \\ - 3 & 0 & 1\end{bmatrix}^T = \begin{bmatrix}7 & - 3 & - 3 \\ - 1 & 1 & 0 \\ - 1 & 0 & 1\end{bmatrix}\]
\[\text{ and }\left| A \right| = 1\]
\[ A^{- 1} = \begin{bmatrix}7 & - 3 & - 3 \\ - 1 & 1 & 0 \\ - 1 & 0 & 1\end{bmatrix}\]
\[\text{ Now, }A^{- 1} A = \begin{bmatrix}7 & - 3 & - 3 \\ - 1 & 1 & 0 \\ - 1 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = I_3 \]
APPEARS IN
RELATED QUESTIONS
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If A is an invertible matrix, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If A is an invertible matrix, then det (A−1) is equal to ____________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.