English

Find the Inverse of the Following Matrix. ⎡ ⎢ ⎣ 1 0 0 0 Cos α Sin α 0 Sin α − Cos α ⎤ ⎥ ⎦ - Mathematics

Advertisements
Advertisements

Question

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

Solution

\[G = \begin{bmatrix}1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & - \cos\alpha\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}\cos\alpha & \sin\alpha \\ \sin\alpha & - \cos\alpha\end{vmatrix} = - 1, C_{12} = - \begin{vmatrix}0 & \sin\alpha \\ 0 & - \cos\alpha\end{vmatrix} = 0\text{ and }C_{13} = \begin{vmatrix}0 & \cos\alpha \\ 0 & \sin\alpha\end{vmatrix} = 0\]
\[ C_{21} = - \begin{vmatrix}0 & 0 \\ \sin\alpha & - \cos\alpha\end{vmatrix} = 0, C_{22} = \begin{vmatrix}1 & 0 \\ 0 & - \cos\alpha\end{vmatrix} = - \cos\alpha\text{ and }C_{23} = - \begin{vmatrix}1 & 0 \\ 0 & \sin\alpha\end{vmatrix} = - \sin\alpha\]
\[ C_{31} = \begin{vmatrix}0 & 0 \\ \cos\alpha & \sin\alpha\end{vmatrix} = 0, C_{32} = - \begin{vmatrix}1 & 0 \\ 0 & \sin\alpha\end{vmatrix} = - \sin\alpha\text{ and }C_{33} = \begin{vmatrix}1 & 0 \\ 0 & \cos\alpha\end{vmatrix} = \cos\alpha\]
\[adjF = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - \cos\alpha & - \sin\alpha \\ 0 & - \sin\alpha & \cos\alpha\end{bmatrix}^T = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - \cos\alpha & - \sin\alpha \\ 0 & - \sin\alpha & \cos\alpha\end{bmatrix}\]
\[and \left| F \right| = - 1\]
\[ \therefore F^{- 1} = - 1\begin{bmatrix}- 1 & 0 & 0 \\ 0 & - \cos\alpha & - \sin\alpha \\ 0 & - \sin\alpha & \cos\alpha\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & - \cos\alpha\end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 8.7 | Page 23

RELATED QUESTIONS

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.


Verify A (adj A) = (adj A) A = |A|I.

`[(1,-1,2),(3,0,-2),(1,0,3)]`


Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


If  \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.


Find the inverse of the following matrix:

\[\begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


Given  \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.


If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


If for the matrix A, A3 = I, then A−1 = _____________ .


If \[A^2 - A + I = 0\], then the inverse of A is __________ .


If A and B are invertible matrices, which of the following statement is not correct.


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


Read the following passage:

Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250.

Based on the above information, answer the following questions:

  1. Convert the given above situation into a matrix equation of the form AX = B. (1)
  2. Find | A |. (1)
  3. Find A–1. (2)
    OR
    Determine P = A2 – 5A. (2)

Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×