Advertisements
Advertisements
Question
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
Solution
\[A = \begin{bmatrix} 6 & 5 \\7 & 6 \end{bmatrix} \]
\[ \therefore A^2 = \begin{bmatrix} 71 & 60 \\84 & 71 \end{bmatrix} \]
\[\text{ If }I_2\text{ is the identity matrix of order 2, then}\]
\[ A^2 - 12A + I_2 = \begin{bmatrix} 71 & 60 \\84 & 71 \end{bmatrix} - 12\begin{bmatrix} 6 & 5 \\7 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\0 & 1 \end{bmatrix}\]
\[ \Rightarrow A^2 - 12A + I_2 = \begin{bmatrix} 71 - 72 + 1 & 60 - 60 + 0 \\84 - 84 + 0 & 71 - 72 + 1 \end{bmatrix}\]
\[ \Rightarrow A^2 - 12A + I_2 = 0\]
\[\text{ Thus, A satisfies }x^2 - 12x + 1 = 0 . \]
Now,
\[ A^2 - 12A + I_2 = 0\]
\[ \Rightarrow I_2 = 12A - A^2 \]
\[ \Rightarrow A^{- 1} I_2 = A^{- 1} \left( 12A - A^2 \right) \left[\text{ Pre - multiplying both sides by }A^{- 1} \right]\]
\[ \Rightarrow A^{- 1} = 12 I_2 - A\]
\[ \Rightarrow A^{- 1} = 12 \begin{bmatrix} 1 & 0 \\0 & 1 \end{bmatrix} - \begin{bmatrix} 6 & 5 \\7 & 6 \end{bmatrix} \]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} 12 - 6 & 0 - 5\\ 0 - 7 & 12 - 6 \end{bmatrix} \]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} 6 & - 5 \\ - 7 & 6 \end{bmatrix} \]
APPEARS IN
RELATED QUESTIONS
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the matrix X satisfying the equation
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.