English

To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books - Mathematics

Advertisements
Advertisements

Question

To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.
Sum

Solution

i. Let the cost of one paper bag, one scrap book and one pastel sheet be x, y and z respectively.

30x + 20y + 10z = 410

`\implies` 3x + 2y + z = 41

20x + 10y + 20z = 290

`\implies` 2x + y + 2z = 29

20x + 20y + 20z = 440

`\implies` x + y + z = 22

ii. Given system of equations is equivalent to AX = B

Where `A = [(3, 2, 1),(2, 1, 2),(1, 1, 1)], X = [(x),(y),(z)], B = [(41),(29),(22)]` 

|A| = –2 ≠ 0 `\implies` A–1 exists.

adj A = `[(-1, -1, 3),(0, 2, -4),(1, -1, -1)]`

Thus A–1 = `1/|A| adj A` 

= `-1/2[(-1, -1, 3),(0, 2, -4),(1, -1, -1)]`

AX = B

`\implies` X = A–1B

= `-1/2[(-1, -1, 3),(0, 2, -4),(1, -1, -1)][(41),(29),(22)]`

= `[(2),(15),(5)]`

∴ x = 2, y = 15, z = 5

iii. The cost of one paper bag, one scrap book and one pastel sheet be Rs. 2, Rs. 15 and Rs. 5 respectively.

shaalaa.com
  Is there an error in this question or solution?
2024-2025 (April) Specimen Paper

RELATED QUESTIONS

Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & - 1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & - 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 


Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


|A–1| ≠ |A|–1, where A is non-singular matrix.


If A, B be two square matrices such that |AB| = O, then ____________.


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×