Advertisements
Advertisements
Question
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
Solution
A `= [(1,1,1),(1,2,-3),(2,-1,3)]`
`"A"^2 = [(1,1,1),(1,2,-3),(2,-1,3)] [(1,1,1),(1,2,-3),(2,-1,3)] = [(4,2,1),(-3,8,-14),(7,-3,14)]`
`"A"^3 = "A"^2 "A" = [(4,2,1),(-3,8,-14),(7,-3,14)] [(1,1,1),(1,2,-3),(2,-1,3)]`
`= [(8,7,1),(-23,27,-69),(32,-13,58)]`
`"LHS" = "A"^3 - 6"A"^2 + 5 "A" + 11 "I"`
`= [(8,7,1),(-23,27,-69),(32,-13,58)] - 6 [(4,2,1),(-3,8,-14),(7,-3,14)] + 5 [(1,1,1),(1,2,-3),(2,-1,3)] + 11 [(1,0,0),(0,1,0),(0,0,1)]`
`= [(8,7,1),(-23,27,-69),(32,-13,58)] - [(24,12,6),(-18,48,-84),(42,-18,84)] + [(5,5,5),(5,10,-15),(10,-5,15)] + [(11,0,0),(0,11,0),(0,0,11)]`
`= [(8 - 24 + 5 + 11, 7 - 12 + 5 + 0, 1 - 6 + 5 + 0),(-23 + 18 + 5 + 0, 27 - 48 + 10 + 11, -69 + 84 - 15 + 0),(32 - 42 + 10 + 0,-13 + 18 - 5 + 0, 58 - 84 + 15 + 11)]`
`= [(0,0,0),(0,0,0),(0,0,0)] = 0 ="RHS"`
`"A"^3 - 6"A"^2 + 5"A" + 11 "I" = 0`
`"A"^3 - 6"A"^2 + 5"A" = -11 "I"`
`"A"^2 "AA"^-1 = 6 "AAA"^-1 + 5 "AA"^-1 = 11"IA"^-1`
`11"A"^-1 = - "A"^2 + 6"A" - 5"I" = [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + 6 [(1,1,1),(1,2,-3),(2,-1,3)] - 5 [(1,0,0),(0,1,0),(0,0,1)]`
`= [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + [(6,6,6),(6,12,-18),(12,-6,18)] - [(5,0,0),(0,5,0),(0,0,5)]`
`= [(-3,4,5),(9,-1,-4),(5,-3,-1)]`
`"A"^-1 = 1/11 [(-3,4,5),(9,-1,-4),(5,-3,-1)]`
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that
Find the matrix X satisfying the equation
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If A is an invertible matrix, then which of the following is not true ?
If A is an invertible matrix of order 3, then which of the following is not true ?
If A is a singular matrix, then adj A is ______.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.