English

For the matrix A = [11112-32-13] show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1. - Mathematics

Advertisements
Advertisements

Question

For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.

Sum

Solution

A `= [(1,1,1),(1,2,-3),(2,-1,3)]`

`"A"^2 = [(1,1,1),(1,2,-3),(2,-1,3)] [(1,1,1),(1,2,-3),(2,-1,3)] = [(4,2,1),(-3,8,-14),(7,-3,14)]`

`"A"^3 = "A"^2 "A" = [(4,2,1),(-3,8,-14),(7,-3,14)] [(1,1,1),(1,2,-3),(2,-1,3)]`

`= [(8,7,1),(-23,27,-69),(32,-13,58)]`

`"LHS" = "A"^3 - 6"A"^2 + 5 "A" + 11 "I"`

`= [(8,7,1),(-23,27,-69),(32,-13,58)] - 6 [(4,2,1),(-3,8,-14),(7,-3,14)] + 5 [(1,1,1),(1,2,-3),(2,-1,3)] + 11 [(1,0,0),(0,1,0),(0,0,1)]`

`= [(8,7,1),(-23,27,-69),(32,-13,58)] - [(24,12,6),(-18,48,-84),(42,-18,84)] + [(5,5,5),(5,10,-15),(10,-5,15)] + [(11,0,0),(0,11,0),(0,0,11)]`

`= [(8 - 24 + 5 + 11, 7 - 12 + 5 + 0, 1 - 6 + 5 + 0),(-23 + 18 + 5 + 0, 27 - 48 + 10 + 11, -69 + 84 - 15 + 0),(32 - 42 + 10 + 0,-13 + 18 - 5 + 0, 58 - 84 + 15 + 11)]`

`= [(0,0,0),(0,0,0),(0,0,0)] = 0 ="RHS"`

`"A"^3 - 6"A"^2 + 5"A" + 11 "I" = 0`

`"A"^3 - 6"A"^2 + 5"A" = -11 "I"`

`"A"^2 "AA"^-1 = 6 "AAA"^-1 + 5 "AA"^-1 = 11"IA"^-1`

`11"A"^-1 = - "A"^2 + 6"A" - 5"I" = [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + 6 [(1,1,1),(1,2,-3),(2,-1,3)] - 5 [(1,0,0),(0,1,0),(0,0,1)]`

`= [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + [(6,6,6),(6,12,-18),(12,-6,18)] - [(5,0,0),(0,5,0),(0,0,5)]`

`= [(-3,4,5),(9,-1,-4),(5,-3,-1)]`

`"A"^-1 = 1/11 [(-3,4,5),(9,-1,-4),(5,-3,-1)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise 4.5 [Page 132]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 4 Determinants
Exercise 4.5 | Q 15 | Page 132

RELATED QUESTIONS

Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

If  \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix.

\[\begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]

Show that

(i) \[\left[ F \left( \alpha \right) \right]^{- 1} = F \left( - \alpha \right)\]
(ii) \[\left[ G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)\]
(iii) \[\left[ F \left( \alpha \right)G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)F \left( - \alpha \right)\]

If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If A is an invertible matrix, then which of the following is not true ?


If A is an invertible matrix of order 3, then which of the following is not true ?


If A is a singular matrix, then adj A is ______.


If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .


If for the matrix A, A3 = I, then A−1 = _____________ .


The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .


If \[A^2 - A + I = 0\], then the inverse of A is __________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×