Advertisements
Advertisements
Question
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Solution
\[\text{ Let }A = \begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} . \]
To find inverse, first write A = IA .
\[i . e . , \begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix}1 & - 1 & - 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_1 \to \left( - 1 \right) R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - 1 & - 2 \\ 0 & 3 & 5 \\ 0 & 4 & 7\end{bmatrix} = \begin{bmatrix}- 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - 3 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - 1 & - 2 \\ 0 & 1 & \frac{5}{3} \\ 0 & 4 & 7\end{bmatrix} = \begin{bmatrix}- 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ 3 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_2 \to \frac{1}{3} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{- 1}{3} \\ 0 & 1 & \frac{5}{3} \\ 0 & 0 & \frac{1}{3}\end{bmatrix} = \begin{bmatrix}\frac{- 2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{5}{3} & - \frac{4}{3} & 1\end{bmatrix}A \left[\text{ Applying }R_3 \to R_3 - 4 R_2\text{ and }R_1 \to R_1 + R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{- 1}{3} \\ 0 & 1 & \frac{5}{3} \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{- 2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ 5 & - 4 & 3\end{bmatrix}A \left[\text{ Applying }R_3 \to 3 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & - 1 & 1 \\ - 8 & 7 & - 5 \\ 5 & - 4 & 3\end{bmatrix}A \left[\text{ Applying }R_2 \to R_2 - \frac{5}{3} R_3\text{ and }R_1 \to R_1 + \frac{1}{3} R_3 \right]\]
\[\text{ Hence, }A^{- 1} = \begin{bmatrix}1 & - 1 & 1 \\ - 8 & 7 & - 5 \\ 5 & - 4 & 3\end{bmatrix} .\]
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the matrix X for which
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A and B are invertible matrices, which of the following statement is not correct.
(a) 3
(b) 0
(c) − 3
(d) 1
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
A square matrix A is invertible if det A is equal to ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.