English

Find the Inverse by Using Elementary Row Transformations: ⎡ ⎢ ⎣ − 1 1 2 1 2 3 3 1 1 ⎤ ⎥ ⎦ - Mathematics

Advertisements
Advertisements

Question

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]

Sum

Solution

\[\text{ Let }A = \begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} . \]
To find inverse, first write A = IA . 
\[i . e . , \begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix}1 & - 1 & - 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_1 \to \left( - 1 \right) R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - 1 & - 2 \\ 0 & 3 & 5 \\ 0 & 4 & 7\end{bmatrix} = \begin{bmatrix}- 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - 3 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - 1 & - 2 \\ 0 & 1 & \frac{5}{3} \\ 0 & 4 & 7\end{bmatrix} = \begin{bmatrix}- 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ 3 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_2 \to \frac{1}{3} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{- 1}{3} \\ 0 & 1 & \frac{5}{3} \\ 0 & 0 & \frac{1}{3}\end{bmatrix} = \begin{bmatrix}\frac{- 2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{5}{3} & - \frac{4}{3} & 1\end{bmatrix}A \left[\text{ Applying }R_3 \to R_3 - 4 R_2\text{ and }R_1 \to R_1 + R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{- 1}{3} \\ 0 & 1 & \frac{5}{3} \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{- 2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ 5 & - 4 & 3\end{bmatrix}A \left[\text{ Applying }R_3 \to 3 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & - 1 & 1 \\ - 8 & 7 & - 5 \\ 5 & - 4 & 3\end{bmatrix}A \left[\text{ Applying }R_2 \to R_2 - \frac{5}{3} R_3\text{ and }R_1 \to R_1 + \frac{1}{3} R_3 \right]\]
\[\text{ Hence, }A^{- 1} = \begin{bmatrix}1 & - 1 & 1 \\ - 8 & 7 & - 5 \\ 5 & - 4 & 3\end{bmatrix} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.2 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.2 | Q 16 | Page 34

RELATED QUESTIONS

Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 0 & - 1 \\ 3 & 4 & 5 \\ - 2 & - 4 & - 7\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]


If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.


Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 


\[\text{ If }A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix},\text{ find }A^{- 1}\text{ and show that }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


A square matrix A is invertible if det A is equal to ____________.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×