Advertisements
Advertisements
प्रश्न
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
उत्तर
\[\text{ Let }A = \begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} . \]
To find inverse, first write A = IA .
\[i . e . , \begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix}1 & - 1 & - 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_1 \to \left( - 1 \right) R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - 1 & - 2 \\ 0 & 3 & 5 \\ 0 & 4 & 7\end{bmatrix} = \begin{bmatrix}- 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - 3 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - 1 & - 2 \\ 0 & 1 & \frac{5}{3} \\ 0 & 4 & 7\end{bmatrix} = \begin{bmatrix}- 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ 3 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_2 \to \frac{1}{3} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{- 1}{3} \\ 0 & 1 & \frac{5}{3} \\ 0 & 0 & \frac{1}{3}\end{bmatrix} = \begin{bmatrix}\frac{- 2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{5}{3} & - \frac{4}{3} & 1\end{bmatrix}A \left[\text{ Applying }R_3 \to R_3 - 4 R_2\text{ and }R_1 \to R_1 + R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{- 1}{3} \\ 0 & 1 & \frac{5}{3} \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{- 2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 \\ 5 & - 4 & 3\end{bmatrix}A \left[\text{ Applying }R_3 \to 3 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & - 1 & 1 \\ - 8 & 7 & - 5 \\ 5 & - 4 & 3\end{bmatrix}A \left[\text{ Applying }R_2 \to R_2 - \frac{5}{3} R_3\text{ and }R_1 \to R_1 + \frac{1}{3} R_3 \right]\]
\[\text{ Hence, }A^{- 1} = \begin{bmatrix}1 & - 1 & 1 \\ - 8 & 7 & - 5 \\ 5 & - 4 & 3\end{bmatrix} .\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
If A, B be two square matrices such that |AB| = O, then ____________.
A square matrix A is invertible if det A is equal to ____________.
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)