Advertisements
Advertisements
प्रश्न
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
उत्तर
\[B = \begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}3 & 1 \\ 1 & 1\end{vmatrix} = 2, C_{12} = - \begin{vmatrix}2 & 1 \\ - 1 & 1\end{vmatrix} = - 3\text{ and } C_{13} = \begin{vmatrix}2 & 3 \\ - 1 & 1\end{vmatrix} = 5\]
\[ C_{21} = - \begin{vmatrix}2 & 5 \\ 1 & 1\end{vmatrix} = 3, C_{22} = \begin{vmatrix}1 & 5 \\ - 1 & 1\end{vmatrix} = 6\text{ and }C_{23} = - \begin{vmatrix}1 & 2 \\ - 1 & 1\end{vmatrix} = - 3\]
\[ C_{31} = \begin{vmatrix}2 & 5 \\ 3 & 1\end{vmatrix} = - 13, C_{32} = - \begin{vmatrix}1 & 5 \\ 2 & 1\end{vmatrix} = 9\text{ and }C_{33} = \begin{vmatrix}1 & 2 \\ 2 & 3\end{vmatrix} = - 1\]
\[ \therefore adjB = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 6 & - 3 \\ - 13 & 9 & - 1\end{bmatrix}^T = \begin{bmatrix}2 & 3 & - 13 \\ - 3 & 6 & 9 \\ 5 & - 3 & - 1\end{bmatrix}\]
\[(adjB)B = \begin{bmatrix}21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21\end{bmatrix}\]
\[\text{ and }\left| B \right| = 21\]
\[ \therefore \left| B \right|I = \begin{bmatrix}21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21\end{bmatrix}\]
\[\text{ and }B(adjB) = \begin{bmatrix}21 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 21\end{bmatrix}\]
\[\text{ Thus, }(adjA)A = \left| A \right|I = A(adjA)\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
For the matrix
Find the inverse of the following matrix.
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
Show that
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If A is an invertible matrix, then which of the following is not true ?
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
If A and B are invertible matrices, then which of the following is not correct?
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
|A–1| ≠ |A|–1, where A is non-singular matrix.
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.