Advertisements
Advertisements
प्रश्न
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
उत्तर
\[A = \begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix}0 & 1 & 2 \\ - 2 & 1 & 2 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & - 1 \\ 0 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 - R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ - 2 & 1 & 2 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ 0 & 1 & - 1 \\ 0 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 - R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ - 2 & 1 & 2 \\ 0 & 1 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ 0 & 1 & - 1 \\ 1 & 0 & 0\end{bmatrix} A \left[\text{ Applying }R_3 \to R_3 + R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ - 2 & 3 & - 1 \\ 1 & 0 & 0\end{bmatrix} A \left[\text{ Applying }R_2 \to 3 R_2 - 2 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & - 2 & - 2\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ - 2 & 3 & - 1 \\ 3 & - 3 & 1\end{bmatrix} A \left[\text{ Applying }R_3 \to R_3 - R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ - 2 & 3 & - 1 \\ \frac{- 3}{2} & \frac{3}{2} & \frac{- 1}{2}\end{bmatrix} A \left[\text{ Applying }R_3 \to - \frac{1}{2} R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & - 1 & 0 \\ 0 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ 4 & - 3 & 1 \\ \frac{- 3}{2} & \frac{3}{2} & \frac{- 1}{2}\end{bmatrix} A \left[ \text{ Applying }R_2 \to R_2 - 4 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 1 \\ 0 & - 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & - 1 \\ 4 & - 3 & 1 \\ \frac{5}{2} & \frac{- 3}{2} & \frac{1}{2}\end{bmatrix} A \left[ \text{ Applying }R_3 \to R_3 + R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}- 3 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}- \frac{3}{2} & \frac{3}{2} & - \frac{3}{2} \\ 4 & - 3 & 1 \\ \frac{5}{2} & \frac{- 3}{2} & \frac{1}{2}\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 - R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & \frac{- 1}{2} & \frac{1}{2} \\ 4 & - 3 & 1 \\ \frac{5}{2} & \frac{- 3}{2} & \frac{1}{2}\end{bmatrix} A \left[\text{ Applying }R_1 \to \frac{- 1}{3} R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & \frac{- 1}{2} & \frac{1}{2} \\ - 4 & 3 & - 1 \\ \frac{5}{2} & \frac{- 3}{2} & \frac{1}{2}\end{bmatrix} A \left[\text{ Applying }R_2 \to - R_2 \right]\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
Find the inverse of the following matrix:
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If A, B are two n × n non-singular matrices, then __________ .
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.
A square matrix A is invertible if det A is equal to ____________.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.