हिंदी

Find the inverse of the matrices (if it exists). [2134-10-721] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`

योग

उत्तर

A = `[(2,1,3),(4,-1,0),(-7,2,1)]`

So, adj A `= [(A_11,A_21,A_31),(A_12,A_22,A_32),(A_13,A_23,A_33)]`

`= [(-1,5,3),(-4,23,12),(1,-11,-6)]`

`A^-1` = 2(-1 - 0) - 1(4 - 0) + 3 (8 - 7)

`= -3 ne 0 -> A^-1`

`C_11 = (-1)^(1+1) |(1,0), (2,1)| = -1`

`C12 = (-1)^(1+2) |(4,0), (-7,1)| = -4`

`C_13 = (-1)^(1+3)|(4,-1),(-7,2)| =8 - 7 = 1`

`C_21 = (-1)^(2+1) |(1,3), (2,1)| = -(1-6) = 5`

`C_22 = (-1)^(2+2) |(2,3), (-7,1)| = 2+21 = 23`

`C_23 = (-1)^(2+3) |(2,1), (-7,2)| = -(4+7) = -11`

`C_31 = (-1)^(3+1) |(1,3), (-1,0)| = 2`

`C_32 = (-1)^(3+2) |(2,3), (4,0)| = 12`

`C_33 = (-1)^(3+3)|(2,1), (4,-1)| = -6`

`A^-1 = 1/abs A (adjA) = 1/abs A [(A_11,A_21,A_31),(A_12,A_22,A_32),(A_13,A_23,A_33)]`

`= 1/-3 [(-1,5,3),(-4,23,12),(1,-11,-6)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise 4.5 [पृष्ठ १३२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise 4.5 | Q 9 | पृष्ठ १३२

संबंधित प्रश्न

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.


Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]


Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 0 & - 1 \\ 3 & 4 & 5 \\ - 2 & - 4 & - 7\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.


\[\text{ If }A^{- 1} = \begin{bmatrix}3 & - 1 & 1 \\ - 15 & 6 & - 5 \\ 5 & - 2 & 2\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{bmatrix},\text{ find }\left( AB \right)^{- 1} .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×