हिंदी

If a − 1 = ⎡ ⎢ ⎣ 3 − 1 1 − 15 6 − 5 5 − 2 2 ⎤ ⎥ ⎦ and B = ⎡ ⎢ ⎣ 1 2 − 2 − 1 3 0 0 − 2 1 ⎤ ⎥ ⎦ , Find ( a B ) − 1 . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If }A^{- 1} = \begin{bmatrix}3 & - 1 & 1 \\ - 15 & 6 & - 5 \\ 5 & - 2 & 2\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{bmatrix},\text{ find }\left( AB \right)^{- 1} .\]

उत्तर

We know that (AB)1 = B1 A1
\[B = \begin{bmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}Adj . B\]
Now, 
\[\left| B \right| = \begin{vmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{vmatrix}\]
\[ = 1\left( 3 + 0 \right) + 1\left( 2 - 4 \right)\]
\[ = 1\]
\[\text{ Now, to find Adj . B}\]
\[B_{11} = \left( - 1 \right)^{1 + 1} \left( 3 \right) = 3\]
\[ B_{12} = \left( - 1 \right)^{1 + 2} \left( - 1 \right) = 1\]
\[ B_{13} = \left( - 1 \right)^{1 + 3} \left( 2 \right) = 2\]
\[B_{21} = \left( - 1 \right)^{2 + 1} \left( 2 - 4 \right) = 2\]
\[ B_{22} = \left( - 1 \right)^{2 + 2} \left( 1 \right) = 1 \]
\[ B_{23} = \left( - 1 \right)^{2 + 3} \left( - 2 \right) = 2\]
\[B_{31} = \left( - 1 \right)^{3 + 1} \left( 6 \right) = 6\]
\[ B_{32} = \left( - 1 \right)^{3 + 2} \left( - 2 \right) = 2\]
\[ B_{33} = \left( - 1 \right)^{3 + 3} \left( 3 + 2 \right) = 5\]
Therefore, 
\[Adj . B = \begin{bmatrix}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{bmatrix}\]
Thus, 
\[ B^{- 1} = \begin{bmatrix}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{bmatrix} . \]
\[ \left( AB \right)^{- 1} = B^{- 1} A^{- 1} \]
\[ = \begin{bmatrix}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{bmatrix}\begin{bmatrix}3 & - 1 & 1 \\ - 15 & 6 & - 5 \\ 5 & - 2 & 2\end{bmatrix}\]
\[ = \begin{bmatrix}9 - 30 + 30 & - 3 + 12 - 12 & 3 - 10 + 12 \\ 3 - 15 + 10 & - 1 + 6 - 4 & 1 - 5 + 4 \\ 6 - 30 + 25 & - 2 + 12 - 10 & 2 - 10 + 10\end{bmatrix}\]
\[ = \begin{bmatrix}9 & - 3 & 5 \\ - 2 & 1 & 0 \\ 1 & 0 & 2\end{bmatrix}\]
\[\text{ Hence,} \left( AB \right)^{- 1} = \begin{bmatrix}9 & - 3 & 5 \\ - 2 & 1 & 0 \\ 1 & 0 & 2\end{bmatrix}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 36 | पृष्ठ २५

संबंधित प्रश्न

Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]`  find  `(AB)^(-1)`


Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If A and B are invertible matrices, which of the following statement is not correct.


Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\]  be such that \[A^{- 1} = kA\], then k equals ___________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


Read the following passage:

Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250.

Based on the above information, answer the following questions:

  1. Convert the given above situation into a matrix equation of the form AX = B. (1)
  2. Find | A |. (1)
  3. Find A–1. (2)
    OR
    Determine P = A2 – 5A. (2)

A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×