Advertisements
Advertisements
प्रश्न
उत्तर
We know that (AB)−1 = B−1 A−1.
\[B = \begin{bmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{bmatrix}\]
\[ B^{- 1} = \frac{1}{\left| B \right|}Adj . B\]
Now,
\[\left| B \right| = \begin{vmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{vmatrix}\]
\[ = 1\left( 3 + 0 \right) + 1\left( 2 - 4 \right)\]
\[ = 1\]
\[\text{ Now, to find Adj . B}\]
\[B_{11} = \left( - 1 \right)^{1 + 1} \left( 3 \right) = 3\]
\[ B_{12} = \left( - 1 \right)^{1 + 2} \left( - 1 \right) = 1\]
\[ B_{13} = \left( - 1 \right)^{1 + 3} \left( 2 \right) = 2\]
\[B_{21} = \left( - 1 \right)^{2 + 1} \left( 2 - 4 \right) = 2\]
\[ B_{22} = \left( - 1 \right)^{2 + 2} \left( 1 \right) = 1 \]
\[ B_{23} = \left( - 1 \right)^{2 + 3} \left( - 2 \right) = 2\]
\[B_{31} = \left( - 1 \right)^{3 + 1} \left( 6 \right) = 6\]
\[ B_{32} = \left( - 1 \right)^{3 + 2} \left( - 2 \right) = 2\]
\[ B_{33} = \left( - 1 \right)^{3 + 3} \left( 3 + 2 \right) = 5\]
Therefore,
\[Adj . B = \begin{bmatrix}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{bmatrix}\]
Thus,
\[ B^{- 1} = \begin{bmatrix}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{bmatrix} . \]
\[ \left( AB \right)^{- 1} = B^{- 1} A^{- 1} \]
\[ = \begin{bmatrix}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{bmatrix}\begin{bmatrix}3 & - 1 & 1 \\ - 15 & 6 & - 5 \\ 5 & - 2 & 2\end{bmatrix}\]
\[ = \begin{bmatrix}9 - 30 + 30 & - 3 + 12 - 12 & 3 - 10 + 12 \\ 3 - 15 + 10 & - 1 + 6 - 4 & 1 - 5 + 4 \\ 6 - 30 + 25 & - 2 + 12 - 10 & 2 - 10 + 10\end{bmatrix}\]
\[ = \begin{bmatrix}9 & - 3 & 5 \\ - 2 & 1 & 0 \\ 1 & 0 & 2\end{bmatrix}\]
\[\text{ Hence,} \left( AB \right)^{- 1} = \begin{bmatrix}9 & - 3 & 5 \\ - 2 & 1 & 0 \\ 1 & 0 & 2\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If A is an invertible matrix, then which of the following is not true ?
If A is an invertible matrix of order 3, then which of the following is not true ?
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.
To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440. |
Answer the following question:
- Translate the problem into a system of equations.
- Solve the system of equation by using matrix method.
- Hence, find the cost of one paper bag, one scrap book and one pastel sheet.