Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
उत्तर
We know that (AT)−1 = (A−1)T.
\[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}Adj . A\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{vmatrix}\]
\[ = 1\left( - 1 - 8 \right) - 2\left( - 8 + 3 \right)\]
\[ = - 9 + 10\]
\[ = 1\]
\[\text{ Now, to find Adj . A}\]
\[A_{11} = \left( - 1 \right)^{1 + 1} \left( - 9 \right) = - 9\]
\[ A_{12} = \left( - 1 \right)^{1 + 2} \left( 8 \right) = - 8\]
\[ A_{13} = \left( - 1 \right)^{1 + 3} \left( - 2 \right) = - 2\]
\[A_{21} = \left( - 1 \right)^{2 + 1} \left( - 8 \right) = 8\]
\[ A_{22} = \left( - 1 \right)^{2 + 2} \left( 7 \right) = 7 \]
\[ A_{23} = \left( - 1 \right)^{2 + 3} \left( - 2 \right) = 2\]
\[ A_{31} = \left( - 1 \right)^{3 + 1} \left( - 5 \right) = - 5\]
\[ A_{32} = \left( - 1 \right)^{3 + 2} \left( 4 \right) = - 4\]
\[ A_{33} = \left( - 1 \right)^{3 + 3} \left( - 1 \right) = - 1\]
Therefore,
\[Adj . A = \begin{bmatrix}- 9 & 8 & - 5 \\ - 8 & 7 & - 4 \\ - 2 & 2 & - 1\end{bmatrix}\]
Thus,
\[ A^{- 1} = \begin{bmatrix}- 9 & 8 & - 5 \\ - 8 & 7 & - 4 \\ - 2 & 2 & - 1\end{bmatrix} . \]
\[ \left( A^T \right)^{- 1} = \left( A^{- 1} \right)^T \]
\[ = \begin{bmatrix}- 9 & 8 & - 5 \\ - 8 & 7 & - 4 \\ - 2 & 2 & - 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 9 & - 8 & - 2 \\ 8 & 7 & 2 \\ - 5 & - 4 & - 1\end{bmatrix}\]
\[\text{ Hence, }\left( A^T \right)^{- 1} = \begin{bmatrix}- 9 & - 8 & - 2 \\ 8 & 7 & 2 \\ - 5 & - 4 & - 1\end{bmatrix} .\]
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If A is a singular matrix, then adj A is ______.
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
(a) 3
(b) 0
(c) − 3
(d) 1
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
A square matrix A is invertible if det A is equal to ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.