मराठी

Let A = [1-21-231115] verify that [adj A]–1 = adj (A–1) (A–1)–1 = A - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A
बेरीज

उत्तर

A = `[(1,-2,1),(-2,3,1),(1,1,5)]` 

∴ |A| = 1(15 - 1) + 2(-10 - 1) + 1(-2 - 3)

= 14 - 22 - 5

= -13

Now, `A_11 = 14, A_12 = 11, A_13 = -5`

`A_21 = 11, A_22 = 4, A_23 = -3`

`A_31 = -5, A_32 = -3, A_33 = -1`

∴ adj A = `[(14,11,-5),(11,4,-3),(-5,-3,-1)]`

∴ `A^-1 = 1/|A|`(adj A)

= `-1/13[(14,11,-5),(11,4,-3),(-5,-3,-1)] = 1/13[(-14,-11,5),(-11,-4,3),(5,3,1)]`

(i) |adj A| = 14(-4 - 9) - 11(-11 - 15)-5(-33 + 20)

= 14(-13) - 11(-26) - 5(-13)

= -183 + 286 + 65 = 169

we have,

adj(adj A) = `[(-13,26,-13),(26,-39,-13),(-13,-13,-65)]`

∴ `[adj A]^-1 = 1/|adj A|(adj(adjA))`

= `1/169[(-13,26,-13),(26,-39,-13),(-13,-13,-65)]`

= `1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)]`

Now, `A^-1 = 1/13[(-14,-11,5),(-11,-4,3),(5,3,1)] = [(-14/13, -11/13, 5/13),(-11/13,-4/13,3/13),(5/13,3/13,1/13)]`

∴ `adj(A^-1) = [(-4/169 - 9/169, -(-11/169 - 15/169),-33/169 + 20/169),(-(-11/169 - 15/169),(-14/169 - 25/169), -(42/169 + 55/169)),(-33/169 + 20/169, -(42/169 + 55/169), 56/169 - 121/169)]`

= `1/169[(-13,26,-13),(26,-39,-13),(-13,-13,-65)] = 1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)]`

So, `[adjA]^-1 = adj(A^-1)`. 

(ii) We have shown that:

`A^-1 = 1/13[(-14,-11,5),(-11,-4,3),(5,3,1)]`

or, `adjA^-1 = 1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)]`

Now,

`|A^-1| = (1/13)^3[-14 xx (-13) + 11 xx (-26) + 5 xx (-13)]`

`= (1/13)^3 xx (-169) `

`= -1/13`

∴ `(A^-1)^-1 = (adjA^-1)/|A^-1| `

`= 1/((-1/13)) xx 1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)] `

= `[(1,-2,1),(-2,3,1),(1,1,5)]` = A

Hence, (A-1)-1 = A

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants - Exercise 4.7 [पृष्ठ १४२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 4 Determinants
Exercise 4.7 | Q 8 | पृष्ठ १४२

संबंधित प्रश्‍न

Verify A (adj A) = (adj A) A = |A|I.

`[(2,3),(-4,-6)]`


Verify A (adj A) = (adj A) A = |A|I.

`[(1,-1,2),(3,0,-2),(1,0,3)]`


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]`  find  `(AB)^(-1)`


If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.


Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix:

\[\begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

If  \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that 

\[A^2 = xA + yI = O\] . Hence, evaluate A−1.

If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 


\[\text{ If }A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix},\text{ find }A^{- 1}\text{ and show that }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


If A is a singular matrix, then adj A is ______.


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


If for the matrix A, A3 = I, then A−1 = _____________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


|A–1| ≠ |A|–1, where A is non-singular matrix.


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos"  2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.


If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×