Advertisements
Advertisements
प्रश्न
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
उत्तर
A = `[(1,-2,1),(-2,3,1),(1,1,5)]`
∴ |A| = 1(15 - 1) + 2(-10 - 1) + 1(-2 - 3)
= 14 - 22 - 5
= -13
Now, `A_11 = 14, A_12 = 11, A_13 = -5`
`A_21 = 11, A_22 = 4, A_23 = -3`
`A_31 = -5, A_32 = -3, A_33 = -1`
∴ adj A = `[(14,11,-5),(11,4,-3),(-5,-3,-1)]`
∴ `A^-1 = 1/|A|`(adj A)
= `-1/13[(14,11,-5),(11,4,-3),(-5,-3,-1)] = 1/13[(-14,-11,5),(-11,-4,3),(5,3,1)]`
(i) |adj A| = 14(-4 - 9) - 11(-11 - 15)-5(-33 + 20)
= 14(-13) - 11(-26) - 5(-13)
= -183 + 286 + 65 = 169
we have,
adj(adj A) = `[(-13,26,-13),(26,-39,-13),(-13,-13,-65)]`
∴ `[adj A]^-1 = 1/|adj A|(adj(adjA))`
= `1/169[(-13,26,-13),(26,-39,-13),(-13,-13,-65)]`
= `1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)]`
Now, `A^-1 = 1/13[(-14,-11,5),(-11,-4,3),(5,3,1)] = [(-14/13, -11/13, 5/13),(-11/13,-4/13,3/13),(5/13,3/13,1/13)]`
∴ `adj(A^-1) = [(-4/169 - 9/169, -(-11/169 - 15/169),-33/169 + 20/169),(-(-11/169 - 15/169),(-14/169 - 25/169), -(42/169 + 55/169)),(-33/169 + 20/169, -(42/169 + 55/169), 56/169 - 121/169)]`
= `1/169[(-13,26,-13),(26,-39,-13),(-13,-13,-65)] = 1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)]`
So, `[adjA]^-1 = adj(A^-1)`.
(ii) We have shown that:
`A^-1 = 1/13[(-14,-11,5),(-11,-4,3),(5,3,1)]`
or, `adjA^-1 = 1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)]`
Now,
`|A^-1| = (1/13)^3[-14 xx (-13) + 11 xx (-26) + 5 xx (-13)]`
`= (1/13)^3 xx (-169) `
`= -1/13`
∴ `(A^-1)^-1 = (adjA^-1)/|A^-1| `
`= 1/((-1/13)) xx 1/13[(-1,2,-1),(2,-3,-1),(-1,-1,-5)] `
= `[(1,-2,1),(-2,3,1),(1,1,5)]` = A
Hence, (A-1)-1 = A
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the matrix X for which
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If A is a singular matrix, then adj A is ______.
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
If A is an invertible matrix, then det (A−1) is equal to ____________ .
|A–1| ≠ |A|–1, where A is non-singular matrix.
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.