Advertisements
Advertisements
प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
उत्तर
A ` = [(1,-1,2),(3,0,-2),(1,0,3)]`
|A| = 1[0 - 0] + 1[9 + 2] + 2[0 - 0]
= 1 × 11
= 11
`"A"_11 = (- 1)^(1 + 1) |(0,-2),(0,3)| = (- 1)^2 [0 - 0] = 0`
`"A"_12 = (- 1)^(1 + 2) |(3,-2),(1,3)| = (- 1)^3 [9 + 2] = (- 11) = - 11`
`"A"_13 = (- 1)^(1 + 3) |(3,0),(1,0)| = (- 1)^4 [0 - 0] = 0`
`"A"_21 = (- 1)^(2 + 1) |(-1,2),(0,3)| = (- 1)^3 [- 3 - 0] = - 1 xx (- 3) = 3`
`"A"_22 = (- 1)^(2 + 2) |(1, 2),(1,3)| = (- 1)^4 [3 - 2] = 1 xx 1 + 1`
`"A"_23 = (- 1)^(2+ 3) |(1,-1),(1,0)| = [0 - 1] = -1`
`"A"_31 = (- 1)^(3 + 1) |(-1,2),(0,-2)| = (- 1)^4 [2 - 0] = 1 xx 2 = 2`
`"A"_32 = (- 1)^(3 + 2) |(1,2),(3,-2)| = (- 1)^5 [- 2 - 6] = - 1 xx (- 8) = 8`
`"A"_33 = (- 1)^(3 + 3) |(1,-1),(3,0)| = (- 1)^6 [0 + 3] = 1 xx 3 = 3`
adj A = `[(0,-11,0),(3,1,-1),(2,8,3)] = [(0,3,2),(-11,1,8),(0,-1,3)]`
LHS = A
(adj A) `= [(1,-1,2),(3,0,-2),(1,0,3)] [(0,3,2),(-11,1,8),(0,-1,3)]`
`[(1 xx 0 + (- 1) xx (- 11) + 2 xx 0, 1 xx 3 + (- 1) xx 1 + 2 xx (- 1), 1 xx 2 + (- 1) xx 8 + 2 xx 3),(3 xx 0 + 0 xx (- 11) + (- 2) xx 0, 3 xx 3 + 0 xx 1 + (- 2) xx (- 1), 3 xx 2 + 0 xx 8 + (- 2) xx 3),(1 xx 0 + 0 xx (- 11) + 3 xx 0, 1 xx 3 + 0 xx 1 + 3 xx (-1), 1 xx 2 + 0 xx 8 + 3 + 3)]`
`= [(0+11+0,3 - 1 - 2, 2 - 8 + 6),(0+0+0, 9 + 0 + 2, 6 + 0 - 6),(0 + 0 + 0, 3 + 0 - 3, 2 + 0 + 9)]`
`= [(11,0,0),(0,11,0),(0,0,11)] = 11[(1,0,0),(0,1,0),(0,0,1)]` = 11 I = |A| · I
RHS = (adj A)A `= [(0,3,2),(-11,1,8),(0,-1,3)][(1,-1,2),(3,0,-2),(1,0,3)]`
`[(0xx3 + 3 xx 3 + 2 xx 1,0xx(-1) + 3 xx 0 + 2 xx 0,0 xx 2 + 3 xx (- 2) + 2 xx 3),(-11xx1 + 1 xx 3 + 8 xx 1, -11 xx (- 1) + 1 xx 0 + 8 xx 0,-11 xx 2 + 1 xx(- 2) + 8 xx3),(0 xx 1 + (- 1) xx 3 + 3 xx 1, 0xx(- 1) + (- 1) xx 0 + 3 xx 0, 0xx2 + (- 1)xx (- 2) + 3 xx 3)]`
`= [(0 + 9 + 2, 0 + 0 + 0, 0 - 6 + 6),(- 11 + 3 + 8, 11 + 0 + 0, - 22 - 2 + 24),(0 - 3 + 3, 0 + 0 + 0, 0 + 2 + 9)]`
`= [(11,0,0),(0,11,0),(0,0,11)] = 11. [(1,0,0),(0,1,0),(0,0,1)]` = 11 I = |A| I
det`A = | (1,-1,2),(3,0,-2), (1,0,3)|`
= 1 (0) + 1(9+2)+2(0)
= 11I
Hence, A(adj A) = (adj A) A = |A| I
APPEARS IN
संबंधित प्रश्न
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
prove that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If A is an invertible matrix, then which of the following is not true ?
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If A and B are invertible matrices, which of the following statement is not correct.
|adj. A| = |A|2, where A is a square matrix of order two.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.