Advertisements
Advertisements
प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
उत्तर
A ` = [(1,-1,2),(3,0,-2),(1,0,3)]`
|A| = 1[0 - 0] + 1[9 + 2] + 2[0 - 0]
= 1 × 11
= 11
`"A"_11 = (- 1)^(1 + 1) |(0,-2),(0,3)| = (- 1)^2 [0 - 0] = 0`
`"A"_12 = (- 1)^(1 + 2) |(3,-2),(1,3)| = (- 1)^3 [9 + 2] = (- 11) = - 11`
`"A"_13 = (- 1)^(1 + 3) |(3,0),(1,0)| = (- 1)^4 [0 - 0] = 0`
`"A"_21 = (- 1)^(2 + 1) |(-1,2),(0,3)| = (- 1)^3 [- 3 - 0] = - 1 xx (- 3) = 3`
`"A"_22 = (- 1)^(2 + 2) |(1, 2),(1,3)| = (- 1)^4 [3 - 2] = 1 xx 1 + 1`
`"A"_23 = (- 1)^(2+ 3) |(1,-1),(1,0)| = [0 - 1] = -1`
`"A"_31 = (- 1)^(3 + 1) |(-1,2),(0,-2)| = (- 1)^4 [2 - 0] = 1 xx 2 = 2`
`"A"_32 = (- 1)^(3 + 2) |(1,2),(3,-2)| = (- 1)^5 [- 2 - 6] = - 1 xx (- 8) = 8`
`"A"_33 = (- 1)^(3 + 3) |(1,-1),(3,0)| = (- 1)^6 [0 + 3] = 1 xx 3 = 3`
adj A = `[(0,-11,0),(3,1,-1),(2,8,3)] = [(0,3,2),(-11,1,8),(0,-1,3)]`
LHS = A
(adj A) `= [(1,-1,2),(3,0,-2),(1,0,3)] [(0,3,2),(-11,1,8),(0,-1,3)]`
`[(1 xx 0 + (- 1) xx (- 11) + 2 xx 0, 1 xx 3 + (- 1) xx 1 + 2 xx (- 1), 1 xx 2 + (- 1) xx 8 + 2 xx 3),(3 xx 0 + 0 xx (- 11) + (- 2) xx 0, 3 xx 3 + 0 xx 1 + (- 2) xx (- 1), 3 xx 2 + 0 xx 8 + (- 2) xx 3),(1 xx 0 + 0 xx (- 11) + 3 xx 0, 1 xx 3 + 0 xx 1 + 3 xx (-1), 1 xx 2 + 0 xx 8 + 3 + 3)]`
`= [(0+11+0,3 - 1 - 2, 2 - 8 + 6),(0+0+0, 9 + 0 + 2, 6 + 0 - 6),(0 + 0 + 0, 3 + 0 - 3, 2 + 0 + 9)]`
`= [(11,0,0),(0,11,0),(0,0,11)] = 11[(1,0,0),(0,1,0),(0,0,1)]` = 11 I = |A| · I
RHS = (adj A)A `= [(0,3,2),(-11,1,8),(0,-1,3)][(1,-1,2),(3,0,-2),(1,0,3)]`
`[(0xx3 + 3 xx 3 + 2 xx 1,0xx(-1) + 3 xx 0 + 2 xx 0,0 xx 2 + 3 xx (- 2) + 2 xx 3),(-11xx1 + 1 xx 3 + 8 xx 1, -11 xx (- 1) + 1 xx 0 + 8 xx 0,-11 xx 2 + 1 xx(- 2) + 8 xx3),(0 xx 1 + (- 1) xx 3 + 3 xx 1, 0xx(- 1) + (- 1) xx 0 + 3 xx 0, 0xx2 + (- 1)xx (- 2) + 3 xx 3)]`
`= [(0 + 9 + 2, 0 + 0 + 0, 0 - 6 + 6),(- 11 + 3 + 8, 11 + 0 + 0, - 22 - 2 + 24),(0 - 3 + 3, 0 + 0 + 0, 0 + 2 + 9)]`
`= [(11,0,0),(0,11,0),(0,0,11)] = 11. [(1,0,0),(0,1,0),(0,0,1)]` = 11 I = |A| I
det`A = | (1,-1,2),(3,0,-2), (1,0,3)|`
= 1 (0) + 1(9+2)+2(0)
= 11I
Hence, A(adj A) = (adj A) A = |A| I
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
prove that \[A^{- 1} = A^3\]
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the matrix X satisfying the equation
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
If A is an invertible matrix, then det (A−1) is equal to ____________ .
If A and B are invertible matrices, then which of the following is not correct?
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.