Advertisements
Advertisements
प्रश्न
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
विकल्प
\[a = 1, b = 1\]
\[a = \cos 2 \theta, b = \sin 2 \theta\]
\[a = \sin 2 \theta, b = \cos 2 \theta\]
None of these
उत्तर
\[a = \cos 2 \theta, b = \sin 2 \theta\]
\[\begin{bmatrix}1 & \tan\theta \\ - \tan\theta & 1\end{bmatrix}^{- 1} = \frac{1}{\sec^2 \theta}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix}\]
Given:-
\[ \begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan\theta \\ - \tan\theta & 1\end{bmatrix}^{- 1} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix}\frac{1}{\sec^2 \theta}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]
\[ \Rightarrow \frac{1}{\sec^2 \theta}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}\frac{1 - \tan^2 \theta}{\sec^2 \theta} & \frac{- 2\tan\theta}{\sec^2 \theta} \\ \frac{2\tan\theta}{\sec^2 \theta} & \frac{1 - \tan^2 \theta}{\sec^2 \theta}\end{bmatrix} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]
On comparing, we get
\[a = \frac{1 - \tan^2 \theta}{\sec^2 \theta}\text{ and }b = \frac{2\tan\theta}{\sec^2 \theta}\]
\[ \Rightarrow a = \cos^2 \theta - \sin^2 \theta\text{ and }b = 2\sin\theta\cos\theta\]
\[ \Rightarrow a = \cos2\theta\text{ and }b = \sin2\theta\]
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A, B are two n × n non-singular matrices, then __________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)