मराठी

If [ 1 − Tan θ Tan θ 1 ] [ 1 Tan θ − Tan θ 1 ] − 1 = [ a − B B a ] , Then (A) a = 1 , B = 1 (B) a = Cos 2 θ , B = Sin 2 θ (C) a = Sin 2 θ , B = Cos 2 θ (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .

पर्याय

  • \[a = 1, b = 1\]

  • \[a = \cos 2 \theta, b = \sin 2 \theta\]

  • \[a = \sin 2 \theta, b = \cos 2 \theta\]

  • None of these

MCQ

उत्तर

\[a = \cos 2 \theta, b = \sin 2 \theta\]

\[\begin{bmatrix}1 & \tan\theta \\ - \tan\theta & 1\end{bmatrix}^{- 1} = \frac{1}{\sec^2 \theta}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix}\]

Given:-

\[ \begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan\theta \\ - \tan\theta & 1\end{bmatrix}^{- 1} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix}\frac{1}{\sec^2 \theta}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]

\[ \Rightarrow \frac{1}{\sec^2 \theta}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix}\begin{bmatrix}1 & - \tan\theta \\ \tan\theta & 1\end{bmatrix} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}\frac{1 - \tan^2 \theta}{\sec^2 \theta} & \frac{- 2\tan\theta}{\sec^2 \theta} \\ \frac{2\tan\theta}{\sec^2 \theta} & \frac{1 - \tan^2 \theta}{\sec^2 \theta}\end{bmatrix} = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\]

On comparing, we get

\[a = \frac{1 - \tan^2 \theta}{\sec^2 \theta}\text{ and }b = \frac{2\tan\theta}{\sec^2 \theta}\]

\[ \Rightarrow a = \cos^2 \theta - \sin^2 \theta\text{ and }b = 2\sin\theta\cos\theta\]

\[ \Rightarrow a = \cos2\theta\text{ and }b = \sin2\theta\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.4 | Q 27 | पृष्ठ ३८

संबंधित प्रश्‍न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Verify A (adj A) = (adj A) A = |A|I.

`[(1,-1,2),(3,0,-2),(1,0,3)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`


Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


If  \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.


Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 0 & - 1 \\ 3 & 4 & 5 \\ - 2 & - 4 & - 7\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 


Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\]  and hence show that \[A\left( adj A \right) = \left| A \right| I_3\]. 


\[\text{ If }A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix},\text{ find }A^{- 1}\text{ and show that }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


A square matrix A is invertible if det A is equal to ____________.


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×