मराठी

If a = ⎡ ⎢ ⎣ 0 1 1 1 0 1 1 1 0 ⎤ ⎥ ⎦ , Find a − 1 and Show that a − 1 = 1 2 ( a 2 − 3 I ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If }A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix},\text{ find }A^{- 1}\text{ and show that }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]

उत्तर

\[A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}Adj . A\]
Now, 
\[\left| A \right| = \begin{vmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{vmatrix}\]
\[ = - 1\left( - 1 \right) + 1\left( 1 \right)\]
\[ = 2\]
Now, to find Adj . A
\[A_{11} = \left( - 1 \right)^{1 + 1} \left( - 1 \right) = - 1\]
\[ A_{12} = \left( - 1 \right)^{1 + 2} \left( - 1 \right) = 1\]
\[ A_{13} = \left( - 1 \right)^{1 + 3} \left( 1 \right) = 1 \]
\[ A_{21} = \left( - 1 \right)^{2 + 1} \left( - 1 \right) = 1\]
\[ A_{22} = \left( - 1 \right)^{2 + 2} \left( - 1 \right) = - 1 \]
\[ A_{23} = \left( - 1 \right)^{2 + 3} \left( - 1 \right) = 1 \]
\[ A_{31} = \left( - 1 \right)^{3 + 1} \left( 1 \right) = 1\]
\[ A_{32} = \left( - 1 \right)^{3 + 2} \left( - 1 \right) = 1\]
\[ A_{33} = \left( - 1 \right)^{3 + 3} \left( - 1 \right) = - 1 \]
Therefore, 
\[Adj . A = \begin{bmatrix}- 1 & 1 & 1 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1\end{bmatrix}\]
Thus, 
\[ A^{- 1} = \frac{1}{2}\begin{bmatrix}- 1 & 1 & 1 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1\end{bmatrix} . \]
Now,
\[ A^2 = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 + 1 + 1 & 0 + 0 + 1 & 0 + 1 + 0 \\ 0 + 0 + 1 & 1 + 0 + 1 & 1 + 0 + 0 \\ 0 + 1 + 0 & 1 + 0 + 0 & 1 + 1 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{bmatrix}\]
\[\text{ Now, to show }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right)\]
RHS
\[ = \frac{1}{2}\left( A^2 - 3I \right)\]
\[ = \frac{1}{2}\left( \begin{bmatrix}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{bmatrix} - 3\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} \right)\]
\[ = \frac{1}{2}\begin{bmatrix}- 1 & 1 & 1 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1\end{bmatrix}\]
\[ = A^{- 1} \]
 = LHS
\[\text{ Hence, }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 39 | पृष्ठ २५

संबंधित प्रश्‍न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]`  find  `(AB)^(-1)`


Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.


If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]


Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.


Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.


If A, B are two n × n non-singular matrices, then __________ .


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


If \[A^2 - A + I = 0\], then the inverse of A is __________ .


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\]  be such that \[A^{- 1} = kA\], then k equals ___________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


If A, B be two square matrices such that |AB| = O, then ____________.


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×