Advertisements
Advertisements
प्रश्न
prove that \[A^{- 1} = A^3\]
उत्तर
\[A = \frac{1}{9}\begin{bmatrix} - 8 & 1 & 4\\ 4 & 4 & 7\\ 1 & - 8 & 4 \end{bmatrix} = \begin{bmatrix} \frac{- 8}{9} & \frac{1}{9} & \frac{4}{9}\\\frac{4}{9} & \frac{4}{9} & \frac{7}{9}\\ \frac{1}{9} & \frac{- 8}{9} & \frac{4}{9} \end{bmatrix}\]
\[ \Rightarrow A^T = \begin{bmatrix} \frac{- 8}{9} & \frac{4}{9} & \frac{1}{9}\\\frac{1}{9} & \frac{4}{9} & \frac{- 8}{9}\\ \frac{4}{9} & \frac{7}{9} & \frac{4}{9} \end{bmatrix} = \frac{1}{9}\begin{bmatrix} - 8 & 4 & 1\\ 1 & 4 & - 8 \\ 4 & 7 & 4 \end{bmatrix} . . . (1)\]
\[\left| A \right| = \begin{vmatrix} \frac{- 8}{9} & \frac{1}{9} & \frac{4}{9}\\\frac{4}{9} & \frac{4}{9} & \frac{7}{9}\\ \frac{1}{9} & \frac{- 8}{9} & \frac{4}{9} \end{vmatrix} = \frac{1}{9 \times 9 \times 9}\begin{vmatrix} - 8 & 1 & 4\\ 4 & 4 & 7\\ 1 & - 8 & 4 \end{vmatrix}\]
\[ = \frac{1}{9 \times 9 \times 9}\left[ \left( - 8 \times 72 \right) - \left( 1 \times 9 \right) + \left\{ 4 \times \left( - 36 \right) \right\} \right]\]
\[ = \frac{1}{9 \times 9 \times 9} \times 9 \times \left\{ - 64 - 1 - 16 \right\} = - \frac{9 \times 81}{9 \times 9 \times 9} = - 1\]
\[\text{ If }C_{ij}\text{ is a cofactor of }a_{ij}\text{ such that A }= \left[ a_{ij} \right],\text{ then we have }\]
\[ C_{11} = \frac{8}{9} C {}_{12} = \frac{- 1}{9} C {}_{13} = \frac{- 4}{9}\]
\[ C_{21} = \frac{- 4}{9} C_{22} = \frac{- 4}{9} C_{23} = \frac{- 7}{9}\]
\[ C_{31} = \frac{- 1}{9} C_{32} = \frac{8}{9} C_{33} = \frac{- 4}{9}\]
Now,
\[adj A = \begin{bmatrix} \frac{8}{9} & \frac{- 1}{9} & \frac{- 4}{9}\\\frac{- 4}{9} & \frac{- 4}{9} & \frac{- 7}{9}\\\frac{- 1}{9} & \frac{8}{9} & \frac{- 4}{9} \end{bmatrix}^T = \begin{bmatrix} \frac{8}{9} & \frac{- 4}{9} & \frac{- 1}{9} \\\frac{- 1}{9} & \frac{- 4}{9} & \frac{8}{9}\\ \frac{- 4}{9} & \frac{- 7}{9} & \frac{- 4}{9} \end{bmatrix}\]
\[ \therefore A^{- 1} = \frac{1}{\left| A \right|}adj A = - 1 \times \frac{1}{9}\begin{bmatrix} 8 & - 4 & - 1\\ - 1 & - 4 & 8 \\ - 4 & - 7 & - 4 \end{bmatrix} = \frac{1}{9}\begin{bmatrix} - 8 & 4 & 1\\1 & 4 & - 8 \\ 4 & 7 & 4 \end{bmatrix} = A^T [\text{ From } (1)]\]
\[ \Rightarrow A^{- 1} = A^T \]
APPEARS IN
संबंधित प्रश्न
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If A, B are two n × n non-singular matrices, then __________ .
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
If A and B are invertible matrices, which of the following statement is not correct.
A square matrix A is invertible if det A is equal to ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)