मराठी

If a = ⎡ ⎢ ⎣ 1 2 2 2 1 2 2 2 1 ⎤ ⎥ ⎦ , Find a − 1 and Prove that a 2 − 4 a − 5 I = O - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]

उत्तर

\[A = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{vmatrix} = 1\left( 1 - 4 \right) - 2\left( 2 - 4 \right) + 2\left( 4 - 2 \right) = - 3 + 4 + 4 = 5 \]
\[\text{ Since, }\left| A \right| \neq 0\]
Hence, A is invertible .
Now, 
\[ A^2 = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 4 + 4 & 2 + 2 + 4 & 2 + 4 + 2\\2 + 2 + 4 & 4 + 1 + 4 & 4 + 2 + 2\\2 + 4 + 2 & 4 + 2 + 2 & 1 + 4 + 4 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8\\8 & 9 & 8\\8 & 8 & 9 \end{bmatrix}\]
\[\text{ Now, }A^2 - 4A - 5I = \begin{bmatrix} 9 & 8 & 8\\8 & 9 & 8\\8 & 8 & 9 \end{bmatrix} - 4\begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} - 5\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 9 - 4 - 5 & 8 - 8 - 0 & 8 - 8 - 0\\8 - 8 - 0 & 9 - 4 - 5 & 8 - 8 - 0\\8 - 8 - 0 & 8 - 8 - 0 & 9 - 4 - 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix} = O \]
\[ \Rightarrow A^2 - 4A - 5I = O [\text{ Proved }]\]
\[\text{ Again,} A^2 - 4A - 5I = O\]
\[ \Rightarrow A^{- 1} \left( A^2 - 4A - 5I \right) = A^{- 1} O [\text{ Pre - multiplying with }A^{- 1} ]\]
\[ \Rightarrow A^{- 1} A^2 - 4 A^{- 1} A - 5 A^{- 1} = O\]
\[ \Rightarrow A - 4I = 5 A^{- 1} \]
\[ \Rightarrow 5 A^{- 1} = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 - 4 & 2 - 0 & 2 - 0\\2 - 0 & 1 - 4 & 2 - 0\\2 - 0 & 2 - 0 & 1 - 4 \end{bmatrix} = \begin{bmatrix} - 3 & 2 & 2\\ 2 & - 3 & 2\\ 2 & 2 & - 3 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{5}\begin{bmatrix} - 3 & 2 & 2\\ 2 & - 3 & 2\\ 2 & 2 & - 3 \end{bmatrix}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 34 | पृष्ठ २४

संबंधित प्रश्‍न

If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


For the matrix 

\[A = \begin{bmatrix}1 & - 1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10\end{bmatrix}\] , show that A (adj A) = O.

Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]


If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If A is a singular matrix, then adj A is ______.


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


A square matrix A is invertible if det A is equal to ____________.


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×