मराठी

If a = [ 2 3 5 − 2 ] Be Such that a − 1 = K a , Then Find the Value of K. - Mathematics

Advertisements
Advertisements

प्रश्न

If A=[2352] be such that A1=kA,  then find the value of k.

उत्तर

A=[2352]
|A|=|2352|=1415=19
 The value is non - zero, so A1 exists .
 By definition, we have 
A1A=I[ I is the identity matrix]
kA.A=I[ Substituting A1=kA]
k[2352][2352]=[1001]
k[4+1566101015+4]=[1001]
k[190019]=[1001]
k=119

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.3 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.3 | Q 19 | पृष्ठ ३५

संबंधित प्रश्‍न

If A-1=[3-11-156-55-22] and B=[12-2-1300-21]  find  (AB)-1


Find the adjoint of the following matrix:
[3524]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:
[abcd]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:
[122212221]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


For the matrix 

A=[11123018210] , show that A (adj A) = O.

If  A=[433101443], show that adj A = A.


Find the inverse of the following matrix:

[2531]

If A=[2312] , verify that A24A+I=O, where I=[1001] and O=[0000] . Hence, find A−1.


Show that the matrix, A=[102212341]  satisfies the equation,  A3A23AI3=O . Hence, find A−1.


Find the matrix X for which 

[3275]X[1121]=[2104]

 


Find the adjoint of the matrix A=[122212221]  and hence show that A(adjA)=|A|I3


Find the inverse by using elementary row transformations:

[5221]


Find the inverse by using elementary row transformations:

[012123311]


Find the inverse by using elementary row transformations:

[301230041]    


Find the inverse by using elementary row transformations:

[112123311]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If A=[cosθsinθsinθcosθ] and A(adjA=)[k00k], then find the value of k.


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


If A=[1320], write adj A.


If A=[2352] , write  A1 in terms of A.


If A is an invertible matrix, then which of the following is not true ?


If S=[abcd], then adj A is ____________ .


If A, B are two n × n non-singular matrices, then __________ .


If A=[a000a000a] , then the value of |adj A| is _____________ .


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


For any 2 × 2 matrix, if A(adjA)=[100010] , then |A| is equal to ______ .


If A satisfies the equation x35x2+4x+λ=0 then A-1 exists if _____________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If A2A+I=0, then the inverse of A is __________ .


Let A=[1235] and B=[1002] and X be a matrix such that A = BX, then X is equal to _____________ .


If A=[101001ab2], then aI + bA + 2 A2 equals ____________ .


If A=[2132], then An= ______________ .

If A=[235324112], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


|adj. A| = |A|2, where A is a square matrix of order two.


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of 11+a+11+b+11+c is ____________.


If A = [aij] is a square matrix of order 2 such that aij{1, when ij0, when i=j, then A2 is ______.


For A = [31-12], then 14A−1 is given by:


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.