मराठी

If S = [ a B C D ] , Then Adj a is (A) [ − D − B − C a ] (B) [ D − B − C a ] (C) [ D B C a ] (D) [ D C B a ] - Mathematics

Advertisements
Advertisements

प्रश्न

If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .

पर्याय

  • \[\begin{bmatrix}- d & - b \\ - c & a\end{bmatrix}\]

  • \[\begin{bmatrix}d & - b \\ - c & a\end{bmatrix}\]

  • \[\begin{bmatrix}d & b \\ c & a\end{bmatrix}\]

  • \[\begin{bmatrix}d & c \\ b & a\end{bmatrix}\]

MCQ

उत्तर

\[\begin{bmatrix}d & - b \\ - c & a\end{bmatrix}\]

Adjoint of a square matrix of order 2 is obtained by interchanging the diagonal elements and changing the signs of off-diagonal elements.

Here,

\[A = \begin{bmatrix} a & b\\c & d \end{bmatrix}\]

\[ \Rightarrow adj A = \begin{bmatrix} d & - b\\ - c & a \end{bmatrix}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.4 | Q 4 | पृष्ठ ३७

संबंधित प्रश्‍न

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.


Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & - 1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & - 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix:

\[\begin{bmatrix}2 & 5 \\ - 3 & 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]

Show that

(i) \[\left[ F \left( \alpha \right) \right]^{- 1} = F \left( - \alpha \right)\]
(ii) \[\left[ G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)\]
(iii) \[\left[ F \left( \alpha \right)G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)F \left( - \alpha \right)\]

Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.


Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 


If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


If A is an invertible matrix, then which of the following is not true ?


If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]


If A, B are two n × n non-singular matrices, then __________ .


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos"  2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×