Advertisements
Advertisements
प्रश्न
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
उत्तर १
Given below is the square matrix. Here, we will interchange the diagonal elements and change the signs of the off-diagonal elements.
\[\ A = \begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
\[adjA = \begin{bmatrix}4 & - 5 \\ - 2 & - 3\end{bmatrix}\]
\[(adjA)A = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[\left| A \right| = - 22\]
\[\left| A \right|I = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[A(adjA) = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[ \therefore (adjA)A = \left| A \right|I = A(adjA)\]
Hence verified.
उत्तर २
Given below is the square matrix. Here, we will interchange the diagonal elements and change the signs of the off-diagonal elements.
\[\ A = \begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
\[adjA = \begin{bmatrix}4 & - 5 \\ - 2 & - 3\end{bmatrix}\]
\[(adjA)A = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[\left| A \right| = - 22\]
\[\left| A \right|I = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[A(adjA) = \begin{bmatrix}- 22 & 0 \\ 0 & - 22\end{bmatrix}\]
\[ \therefore (adjA)A = \left| A \right|I = A(adjA)\]
Hence verified.
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
prove that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
If A and B are invertible matrices, then which of the following is not correct?
A square matrix A is invertible if det A is equal to ____________.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.