Advertisements
Advertisements
प्रश्न
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
उत्तर
\[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{vmatrix} = 2 \times \left( 4 - 1 \right) + 1\left( - 2 + 1 \right) + 1\left( 1 - 2 \right) = 6 - 1 - 1 = 4 \]
\[\text{ Since, }\left| A \right| \neq 0 \]
\[\text{ Hence, }A^{- 1}\text{ exists }. \]
Now,
\[ A^2 = \begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix}\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 + 1 + 1 & - 2 - 2 - 1 & 2 + 1 + 2\\ - 2 - 2 - 1 & 1 + 4 + 1 & - 1 - 2 - 2\\ 2 + 1 + 2 & - 1 - 2 - 2 & 1 + 1 + 4 \end{bmatrix} = \begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix} \]
\[ A^3 = A^2 . A = \begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix}\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} = \begin{bmatrix} 12 + 5 + 5 & - 6 - 10 - 5 & 6 + 5 + 10\\ - 10 - 6 - 5 & 5 + 12 + 5 & - 5 - 6 - 10\\ 10 + 5 + 6 & - 5 - 10 - 6 & 5 + 5 + 12 \end{bmatrix} = \begin{bmatrix} 22 & - 21 & 21\\ - 21 & 22 & - 21\\ 21 &- 21 & 22 \end{bmatrix} \]
\[\text{ Now, }A^3 - 6 A^2 + 9A - 4I = \begin{bmatrix} 22 & - 21 & 21\\ - 21 & 22 & - 21\\ 21 & - 21 & 22 \end{bmatrix} - 6\begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix} + 9\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \]
\[ = \begin{bmatrix} 22 - 36 + 18 - 4 & - 21 + 30 - 9 - 0 & 21 - 30 + 9 - 0\\ - 21 + 30 - 9 - 0 & 22 - 36 + 18 - 4 & - 21 + 30 - 9 - 0\\ 21 - 30 + 9 - 0 & - 21 + 30 - 9 - 0 & 22 - 36 + 18 - 4 \end{bmatrix} \]
\[ = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} = O [\text{ Null matrix }]\]
Hence proved .
\[\text{ Now,} A^3 - 6 A^2 + 9A - 4I = O\]
\[ \Rightarrow A^{- 1} \times \left( A^3 - 6 A^2 + 9A - 4I \right) = A^{- 1} \times O \]
\[ \Rightarrow A^2 - 6A + 9I - 4 A^{- 1} = O\]
\[ \Rightarrow 4 A^{- 1} = A^2 - 6A + 9I\]
\[ \Rightarrow 4 A^{- 1} = \begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix} - 6\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} + 9\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}\]
\[ \Rightarrow 4 A^{- 1} = \begin{bmatrix} 6 - 12 + 9 & - 5 + 6 + 0 & 5 - 6 + 0\\ - 5 + 6 + 0 & 6 - 12 + 9 & - 5 + 6 + 0\\ 5 - 6 + 0 & - 5 + 6 + 0 & 6 - 12 + 9 \end{bmatrix} \]
\[ \Rightarrow 4 A^{- 1} = \begin{bmatrix} 3 & 1 & - 1\\ 1 & 3 & 1\\ - 1 & 1 & 3 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{4}\begin{bmatrix} 3 & 1 & - 1\\ 1 & 3 & 1\\ - 1 & 1 & 3 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
prove that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the matrix X for which
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 4 \\ 4 & 0 & 7 \\ 3 & - 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If A is an invertible matrix, then which of the following is not true ?
If A, B are two n × n non-singular matrices, then __________ .
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
If A and B are invertible matrices, then which of the following is not correct?
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.