हिंदी

If a = ⎡ ⎢ ⎣ 2 − 1 1 − 1 2 − 1 1 − 1 2 ⎤ ⎥ ⎦ . Verify that a 3 − 6 a 2 + 9 a − 4 I = O and Hence Find A−1. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

उत्तर

\[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{vmatrix} = 2 \times \left( 4 - 1 \right) + 1\left( - 2 + 1 \right) + 1\left( 1 - 2 \right) = 6 - 1 - 1 = 4 \]
\[\text{ Since, }\left| A \right| \neq 0 \]
\[\text{ Hence, }A^{- 1}\text{ exists }. \]
Now,
\[ A^2 = \begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix}\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 + 1 + 1 & - 2 - 2 - 1 & 2 + 1 + 2\\ - 2 - 2 - 1 & 1 + 4 + 1 & - 1 - 2 - 2\\ 2 + 1 + 2 & - 1 - 2 - 2 & 1 + 1 + 4 \end{bmatrix} = \begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix} \]
\[ A^3 = A^2 . A = \begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix}\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} = \begin{bmatrix} 12 + 5 + 5 & - 6 - 10 - 5 & 6 + 5 + 10\\ - 10 - 6 - 5 & 5 + 12 + 5 & - 5 - 6 - 10\\ 10 + 5 + 6 & - 5 - 10 - 6 & 5 + 5 + 12 \end{bmatrix} = \begin{bmatrix} 22 & - 21 & 21\\ - 21 & 22 & - 21\\ 21 &- 21 & 22 \end{bmatrix} \]
\[\text{ Now, }A^3 - 6 A^2 + 9A - 4I = \begin{bmatrix} 22 & - 21 & 21\\ - 21 & 22 & - 21\\ 21 & - 21 & 22 \end{bmatrix} - 6\begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix} + 9\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \]
\[ = \begin{bmatrix} 22 - 36 + 18 - 4 & - 21 + 30 - 9 - 0 & 21 - 30 + 9 - 0\\ - 21 + 30 - 9 - 0 & 22 - 36 + 18 - 4 & - 21 + 30 - 9 - 0\\ 21 - 30 + 9 - 0 & - 21 + 30 - 9 - 0 & 22 - 36 + 18 - 4 \end{bmatrix} \]
\[ = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} = O [\text{ Null matrix }]\]
Hence proved . 
\[\text{ Now,} A^3 - 6 A^2 + 9A - 4I = O\]
\[ \Rightarrow A^{- 1} \times \left( A^3 - 6 A^2 + 9A - 4I \right) = A^{- 1} \times O \]
\[ \Rightarrow A^2 - 6A + 9I - 4 A^{- 1} = O\]
\[ \Rightarrow 4 A^{- 1} = A^2 - 6A + 9I\]
\[ \Rightarrow 4 A^{- 1} = \begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix} - 6\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} + 9\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}\]
\[ \Rightarrow 4 A^{- 1} = \begin{bmatrix} 6 - 12 + 9 & - 5 + 6 + 0 & 5 - 6 + 0\\ - 5 + 6 + 0 & 6 - 12 + 9 & - 5 + 6 + 0\\ 5 - 6 + 0 & - 5 + 6 + 0 & 6 - 12 + 9 \end{bmatrix} \]
\[ \Rightarrow 4 A^{- 1} = \begin{bmatrix} 3 & 1 & - 1\\ 1 & 3 & 1\\ - 1 & 1 & 3 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{4}\begin{bmatrix} 3 & 1 & - 1\\ 1 & 3 & 1\\ - 1 & 1 & 3 \end{bmatrix}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 26 | पृष्ठ २४

संबंधित प्रश्न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & - 1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & - 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Given  \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.


Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


\[\text{ If }A^{- 1} = \begin{bmatrix}3 & - 1 & 1 \\ - 15 & 6 & - 5 \\ 5 & - 2 & 2\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{bmatrix},\text{ find }\left( AB \right)^{- 1} .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.


If A is an invertible matrix, then which of the following is not true ?


If A is an invertible matrix of order 3, then which of the following is not true ?


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If A, B are two n × n non-singular matrices, then __________ .


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


|adj. A| = |A|2, where A is a square matrix of order two.


A square matrix A is invertible if det A is equal to ____________.


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.


A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×