Advertisements
Advertisements
प्रश्न
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
उत्तर
\[A = \begin{bmatrix} 6 & 5 \\7 & 6 \end{bmatrix} \]
\[ \therefore A^2 = \begin{bmatrix} 71 & 60 \\84 & 71 \end{bmatrix} \]
\[\text{ If }I_2\text{ is the identity matrix of order 2, then}\]
\[ A^2 - 12A + I_2 = \begin{bmatrix} 71 & 60 \\84 & 71 \end{bmatrix} - 12\begin{bmatrix} 6 & 5 \\7 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\0 & 1 \end{bmatrix}\]
\[ \Rightarrow A^2 - 12A + I_2 = \begin{bmatrix} 71 - 72 + 1 & 60 - 60 + 0 \\84 - 84 + 0 & 71 - 72 + 1 \end{bmatrix}\]
\[ \Rightarrow A^2 - 12A + I_2 = 0\]
\[\text{ Thus, A satisfies }x^2 - 12x + 1 = 0 . \]
Now,
\[ A^2 - 12A + I_2 = 0\]
\[ \Rightarrow I_2 = 12A - A^2 \]
\[ \Rightarrow A^{- 1} I_2 = A^{- 1} \left( 12A - A^2 \right) \left[\text{ Pre - multiplying both sides by }A^{- 1} \right]\]
\[ \Rightarrow A^{- 1} = 12 I_2 - A\]
\[ \Rightarrow A^{- 1} = 12 \begin{bmatrix} 1 & 0 \\0 & 1 \end{bmatrix} - \begin{bmatrix} 6 & 5 \\7 & 6 \end{bmatrix} \]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} 12 - 6 & 0 - 5\\ 0 - 7 & 12 - 6 \end{bmatrix} \]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} 6 & - 5 \\ - 7 & 6 \end{bmatrix} \]
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Show that
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
prove that \[A^{- 1} = A^3\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
If A and B are invertible matrices, then which of the following is not correct?
|adj. A| = |A|2, where A is a square matrix of order two.
Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.