हिंदी

Compute the Adjoint of the Following Matrix: ⎡ ⎢ ⎣ 1 2 2 2 1 2 2 2 1 ⎤ ⎥ ⎦ Verify that (Adj A) a = |A| I = a (Adj A) for the Above Matrix. - Mathematics

Advertisements
Advertisements

प्रश्न

Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

उत्तर

\[ A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}1 & 2 \\ 2 & 1\end{vmatrix} = - 3, C_{12} = - \begin{vmatrix}2 & 2 \\ 2 & 1\end{vmatrix} = 2\text{ and }C_{13} = \begin{vmatrix}2 & 1 \\ 2 & 2\end{vmatrix} = 2\]
\[ C_{21} = - \begin{vmatrix}2 & 2 \\ 2 & 1\end{vmatrix} = 2, C_{22} = \begin{vmatrix}1 & 2 \\ 2 & 1\end{vmatrix} = - 3\text{ and }C_{23} = - \begin{vmatrix}1 & 2 \\ 2 & 2\end{vmatrix} = 2\]
\[ C_{31} = \begin{vmatrix}2 & 2 \\ 1 & 2\end{vmatrix} = 2, C_{32} = - \begin{vmatrix}1 & 2 \\ 2 & 2\end{vmatrix} = 2\text{ and }C_{33} = \begin{vmatrix}1 & 2 \\ 2 & 1\end{vmatrix} = - 3\]
\[ \therefore adjA = \begin{bmatrix}- 3 & 2 & 2 \\ 2 & - 3 & 2 \\ 2 & 2 & - 3\end{bmatrix}^T = \begin{bmatrix}- 3 & 2 & 2 \\ 2 & - 3 & 2 \\ 2 & 2 & - 3\end{bmatrix}\]
\[\text{ and }(adjA)A = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[Now, \left| A \right| = 5\]
\[ \therefore \left| A \right|I = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[\text{ and }A(adjA) = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[\text{ Thus, }(adjA)A = \left| A \right|I = A(adjA)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 2.1 | पृष्ठ २२

संबंधित प्रश्न

Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Verify A (adj A) = (adj A) A = |A|I.

`[(2,3),(-4,-6)]`


Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

Given  \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.


Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If A is an invertible matrix, then which of the following is not true ?


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


If A and B are invertible matrices, then which of the following is not correct?


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


Read the following passage:

Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250.

Based on the above information, answer the following questions:

  1. Convert the given above situation into a matrix equation of the form AX = B. (1)
  2. Find | A |. (1)
  3. Find A–1. (2)
    OR
    Determine P = A2 – 5A. (2)

A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×