English

Compute the Adjoint of the Following Matrix: ⎡ ⎢ ⎣ 1 2 2 2 1 2 2 2 1 ⎤ ⎥ ⎦ Verify that (Adj A) a = |A| I = a (Adj A) for the Above Matrix. - Mathematics

Advertisements
Advertisements

Question

Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Solution

\[ A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}1 & 2 \\ 2 & 1\end{vmatrix} = - 3, C_{12} = - \begin{vmatrix}2 & 2 \\ 2 & 1\end{vmatrix} = 2\text{ and }C_{13} = \begin{vmatrix}2 & 1 \\ 2 & 2\end{vmatrix} = 2\]
\[ C_{21} = - \begin{vmatrix}2 & 2 \\ 2 & 1\end{vmatrix} = 2, C_{22} = \begin{vmatrix}1 & 2 \\ 2 & 1\end{vmatrix} = - 3\text{ and }C_{23} = - \begin{vmatrix}1 & 2 \\ 2 & 2\end{vmatrix} = 2\]
\[ C_{31} = \begin{vmatrix}2 & 2 \\ 1 & 2\end{vmatrix} = 2, C_{32} = - \begin{vmatrix}1 & 2 \\ 2 & 2\end{vmatrix} = 2\text{ and }C_{33} = \begin{vmatrix}1 & 2 \\ 2 & 1\end{vmatrix} = - 3\]
\[ \therefore adjA = \begin{bmatrix}- 3 & 2 & 2 \\ 2 & - 3 & 2 \\ 2 & 2 & - 3\end{bmatrix}^T = \begin{bmatrix}- 3 & 2 & 2 \\ 2 & - 3 & 2 \\ 2 & 2 & - 3\end{bmatrix}\]
\[\text{ and }(adjA)A = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[Now, \left| A \right| = 5\]
\[ \therefore \left| A \right|I = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[\text{ and }A(adjA) = \begin{bmatrix}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{bmatrix}\]
\[\text{ Thus, }(adjA)A = \left| A \right|I = A(adjA)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 2.1 | Page 22

RELATED QUESTIONS

Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.


Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]


Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]

Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]


If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.


If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]    


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If A is an invertible matrix, then which of the following is not true ?


If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]


If A, B are two n × n non-singular matrices, then __________ .


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×