English

If a = 1 9 ⎡ ⎢ ⎣ − 8 1 4 4 4 7 1 − 8 4 ⎤ ⎥ ⎦ , Prove that a − 1 = a 3 - Mathematics

Advertisements
Advertisements

Question

If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

Solution

\[A = \frac{1}{9}\begin{bmatrix} - 8 & 1 & 4\\ 4 & 4 & 7\\ 1 & - 8 & 4 \end{bmatrix} = \begin{bmatrix} \frac{- 8}{9} & \frac{1}{9} & \frac{4}{9}\\\frac{4}{9} & \frac{4}{9} & \frac{7}{9}\\ \frac{1}{9} & \frac{- 8}{9} & \frac{4}{9} \end{bmatrix}\]
\[ \Rightarrow A^T = \begin{bmatrix} \frac{- 8}{9} & \frac{4}{9} & \frac{1}{9}\\\frac{1}{9} & \frac{4}{9} & \frac{- 8}{9}\\ \frac{4}{9} & \frac{7}{9} & \frac{4}{9} \end{bmatrix} = \frac{1}{9}\begin{bmatrix} - 8 & 4 & 1\\ 1 & 4 & - 8 \\ 4 & 7 & 4 \end{bmatrix} . . . (1)\]
\[\left| A \right| = \begin{vmatrix} \frac{- 8}{9} & \frac{1}{9} & \frac{4}{9}\\\frac{4}{9} & \frac{4}{9} & \frac{7}{9}\\ \frac{1}{9} & \frac{- 8}{9} & \frac{4}{9} \end{vmatrix} = \frac{1}{9 \times 9 \times 9}\begin{vmatrix} - 8 & 1 & 4\\ 4 & 4 & 7\\ 1 & - 8 & 4 \end{vmatrix}\]
\[ = \frac{1}{9 \times 9 \times 9}\left[ \left( - 8 \times 72 \right) - \left( 1 \times 9 \right) + \left\{ 4 \times \left( - 36 \right) \right\} \right]\]
\[ = \frac{1}{9 \times 9 \times 9} \times 9 \times \left\{ - 64 - 1 - 16 \right\} = - \frac{9 \times 81}{9 \times 9 \times 9} = - 1\]
\[\text{ If }C_{ij}\text{ is a cofactor of }a_{ij}\text{ such that A }= \left[ a_{ij} \right],\text{ then we have }\]
\[ C_{11} = \frac{8}{9} C {}_{12} = \frac{- 1}{9} C {}_{13} = \frac{- 4}{9}\]
\[ C_{21} = \frac{- 4}{9} C_{22} = \frac{- 4}{9} C_{23} = \frac{- 7}{9}\]
\[ C_{31} = \frac{- 1}{9} C_{32} = \frac{8}{9} C_{33} = \frac{- 4}{9}\]
Now, 
\[adj A = \begin{bmatrix} \frac{8}{9} & \frac{- 1}{9} & \frac{- 4}{9}\\\frac{- 4}{9} & \frac{- 4}{9} & \frac{- 7}{9}\\\frac{- 1}{9} & \frac{8}{9} & \frac{- 4}{9} \end{bmatrix}^T = \begin{bmatrix} \frac{8}{9} & \frac{- 4}{9} & \frac{- 1}{9} \\\frac{- 1}{9} & \frac{- 4}{9} & \frac{8}{9}\\ \frac{- 4}{9} & \frac{- 7}{9} & \frac{- 4}{9} \end{bmatrix}\]
\[ \therefore A^{- 1} = \frac{1}{\left| A \right|}adj A = - 1 \times \frac{1}{9}\begin{bmatrix} 8 & - 4 & - 1\\ - 1 & - 4 & 8 \\ - 4 & - 7 & - 4 \end{bmatrix} = \frac{1}{9}\begin{bmatrix} - 8 & 4 & 1\\1 & 4 & - 8 \\ 4 & 7 & 4 \end{bmatrix} = A^T [\text{ From } (1)]\]
\[ \Rightarrow A^{- 1} = A^T \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 27 | Page 24

RELATED QUESTIONS

Verify A (adj A) = (adj A) A = |A|I.

`[(1,-1,2),(3,0,-2),(1,0,3)]`


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix:

\[\begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]

Find the inverse of the following matrix:

\[\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]

Show that

(i) \[\left[ F \left( \alpha \right) \right]^{- 1} = F \left( - \alpha \right)\]
(ii) \[\left[ G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)\]
(iii) \[\left[ F \left( \alpha \right)G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)F \left( - \alpha \right)\]

\[\text{ If }A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix},\text{ find }A^{- 1}\text{ and show that }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If A is a singular matrix, then adj A is ______.


If \[A^2 - A + I = 0\], then the inverse of A is __________ .


If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


If A and B are invertible matrices, then which of the following is not correct?


A square matrix A is invertible if det A is equal to ____________.


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos"  2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.

To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×