Advertisements
Advertisements
Question
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Solution
A ` = [(1,-1,2),(3,0,-2),(1,0,3)]`
|A| = 1[0 - 0] + 1[9 + 2] + 2[0 - 0]
= 1 × 11
= 11
`"A"_11 = (- 1)^(1 + 1) |(0,-2),(0,3)| = (- 1)^2 [0 - 0] = 0`
`"A"_12 = (- 1)^(1 + 2) |(3,-2),(1,3)| = (- 1)^3 [9 + 2] = (- 11) = - 11`
`"A"_13 = (- 1)^(1 + 3) |(3,0),(1,0)| = (- 1)^4 [0 - 0] = 0`
`"A"_21 = (- 1)^(2 + 1) |(-1,2),(0,3)| = (- 1)^3 [- 3 - 0] = - 1 xx (- 3) = 3`
`"A"_22 = (- 1)^(2 + 2) |(1, 2),(1,3)| = (- 1)^4 [3 - 2] = 1 xx 1 + 1`
`"A"_23 = (- 1)^(2+ 3) |(1,-1),(1,0)| = [0 - 1] = -1`
`"A"_31 = (- 1)^(3 + 1) |(-1,2),(0,-2)| = (- 1)^4 [2 - 0] = 1 xx 2 = 2`
`"A"_32 = (- 1)^(3 + 2) |(1,2),(3,-2)| = (- 1)^5 [- 2 - 6] = - 1 xx (- 8) = 8`
`"A"_33 = (- 1)^(3 + 3) |(1,-1),(3,0)| = (- 1)^6 [0 + 3] = 1 xx 3 = 3`
adj A = `[(0,-11,0),(3,1,-1),(2,8,3)] = [(0,3,2),(-11,1,8),(0,-1,3)]`
LHS = A
(adj A) `= [(1,-1,2),(3,0,-2),(1,0,3)] [(0,3,2),(-11,1,8),(0,-1,3)]`
`[(1 xx 0 + (- 1) xx (- 11) + 2 xx 0, 1 xx 3 + (- 1) xx 1 + 2 xx (- 1), 1 xx 2 + (- 1) xx 8 + 2 xx 3),(3 xx 0 + 0 xx (- 11) + (- 2) xx 0, 3 xx 3 + 0 xx 1 + (- 2) xx (- 1), 3 xx 2 + 0 xx 8 + (- 2) xx 3),(1 xx 0 + 0 xx (- 11) + 3 xx 0, 1 xx 3 + 0 xx 1 + 3 xx (-1), 1 xx 2 + 0 xx 8 + 3 + 3)]`
`= [(0+11+0,3 - 1 - 2, 2 - 8 + 6),(0+0+0, 9 + 0 + 2, 6 + 0 - 6),(0 + 0 + 0, 3 + 0 - 3, 2 + 0 + 9)]`
`= [(11,0,0),(0,11,0),(0,0,11)] = 11[(1,0,0),(0,1,0),(0,0,1)]` = 11 I = |A| · I
RHS = (adj A)A `= [(0,3,2),(-11,1,8),(0,-1,3)][(1,-1,2),(3,0,-2),(1,0,3)]`
`[(0xx3 + 3 xx 3 + 2 xx 1,0xx(-1) + 3 xx 0 + 2 xx 0,0 xx 2 + 3 xx (- 2) + 2 xx 3),(-11xx1 + 1 xx 3 + 8 xx 1, -11 xx (- 1) + 1 xx 0 + 8 xx 0,-11 xx 2 + 1 xx(- 2) + 8 xx3),(0 xx 1 + (- 1) xx 3 + 3 xx 1, 0xx(- 1) + (- 1) xx 0 + 3 xx 0, 0xx2 + (- 1)xx (- 2) + 3 xx 3)]`
`= [(0 + 9 + 2, 0 + 0 + 0, 0 - 6 + 6),(- 11 + 3 + 8, 11 + 0 + 0, - 22 - 2 + 24),(0 - 3 + 3, 0 + 0 + 0, 0 + 2 + 9)]`
`= [(11,0,0),(0,11,0),(0,0,11)] = 11. [(1,0,0),(0,1,0),(0,0,1)]` = 11 I = |A| I
det`A = | (1,-1,2),(3,0,-2), (1,0,3)|`
= 1 (0) + 1(9+2)+2(0)
= 11I
Hence, A(adj A) = (adj A) A = |A| I
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 0 & - 1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{bmatrix}\]
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If A, B are two n × n non-singular matrices, then __________ .
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
|adj. A| = |A|2, where A is a square matrix of order two.
A square matrix A is invertible if det A is equal to ____________.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.