English

For the Matrix a = ⎡ ⎢ ⎣ 1 1 1 1 2 − 3 2 − 1 3 ⎤ ⎥ ⎦ . Show that a − 3 − 6 a 2 + 5 a + 11 I 3 = O . Hence, Find A−1. - Mathematics

Advertisements
Advertisements

Question

For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

Solution

\[A = \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 &- 1& 3 \end{bmatrix} \]

\[ \Rightarrow \left| A \right| = \begin{vmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{vmatrix} = \left( 1 \times 3 \right) - \left( 1 \times 9 \right) + \left( 1 \times - 5 \right) = 3 - 9 - 5 = - 11 \]

\[\text{ Since, }\left| A \right| \neq 0\]

\[\text{Hence, }A^{- 1}\text{ exists . }\]

Now, 

\[ A^2 = \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 &- 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 + 1 + 2 & 1 + 2 - 1 & 1 - 3 + 3\\1 + 2 - 6 & 1 + 4 + 3 & 1 - 6 - 9\\2 - 1 + 6 & 2 - 2 - 3 & 2 + 3 + 9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 & - 14\\ 7 & - 3 & 14 \end{bmatrix}\]

\[\text{ and }A^3 = A^2 . A = \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 & - 14\\7 & - 3 & 14 \end{bmatrix}\begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 + 2 + 2 & 4 + 4 - 1 & 4 - 6 + 3\\ - 3 + 8 - 28 & - 3 + 16 + 14 & - 3 - 24 - 42\\ 7 - 3 + 28 & 7 - 6 - 14 & 7 + 9 + 42 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 1\\ - 23 & 27 & - 69\\ 32 & - 13 & 58 \end{bmatrix}\]

\[\text{ Now, }A^3 - 6 A^2 + 5A + 11 I_3 = \begin{bmatrix} 8 & 7 & 1 \\ - 23 & 27 & - 69 \\ 32 & - 13 & 58 \end{bmatrix} - 6 \begin{bmatrix} 4 & 2 & 1 \\ - 3 & 8 & - 14 \\ 7 & - 3 & 14 \end{bmatrix} + 5 \begin{bmatrix} 1 & 1 & 1\\1 & 2 & - 3\\2 & - 1 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}\]

\[ = \begin{bmatrix} 8 - 24 + 5 + 11 & 7 - 12 + 5 + 0 & 1 - 6 + 5 + 0\\ - 23 + 18 + 5 + 0 & 27 - 48 + 10 + 11 & - 69 + 84 - 15 + 0\\ 32 - 42 + 10 + 0 & - 13 + 18 - 5 + 0 & 58 - 84 + 15 + 11 \end{bmatrix} \]

\[ = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix} = O (\text{ Null matrix})\]

\[\text{ Again, }A^3 - 6 A^2 + 5A + 11 I_3 = O\]

\[ \Rightarrow A^{- 1} \times \left( A^3 - 6 A^2 + 5A + 11 I_3 \right) = A^{- 1} \times O (\text{ Pre - multiplying both sides because }A^{- 1} exists) \]

\[ \Rightarrow \left( A^2 - 6A + 5 I_3 + 11 A^{- 1} \right) = 0\]

\[ \Rightarrow \begin{bmatrix} 4 & 2 & 1\\ - 3 & 8 - 14\\ 7 & - 3 & 14 \end{bmatrix} - 6\begin{bmatrix} 1 & 1 & 1\\1 & 2 &- 3\\2 & - 1 & 3 \end{bmatrix} + 5\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = - 11 A^{- 1} \]

\[ \Rightarrow \begin{bmatrix} 4 - 6 + 5 & 2 - 6 + 0 & 1 - 6 + 0\\ - 3 - 6 + 0 & 8 - 12 + 5 & - 14 + 18 + 0\\ 7 - 12 + 0 & - 3 + 6 + 0 & 14 - 18 + 5 \end{bmatrix} = - 11 A^{- 1} \]

\[ \Rightarrow A^{- 1} = - \frac{1}{11}\begin{bmatrix} 3 & - 4 & - 5\\- 9 & 1 & 4\\ - 5 & 3 & 1 \end{bmatrix} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 24 | Page 24

RELATED QUESTIONS

Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

If  \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.


Find the inverse of the following matrix:

\[\begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]

Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix:

\[\begin{bmatrix}2 & 5 \\ - 3 & 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]

Show that

(i) \[\left[ F \left( \alpha \right) \right]^{- 1} = F \left( - \alpha \right)\]
(ii) \[\left[ G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)\]
(iii) \[\left[ F \left( \alpha \right)G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)F \left( - \alpha \right)\]

If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.


If A is an invertible matrix, then which of the following is not true ?


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.


|adj. A| = |A|2, where A is a square matrix of order two.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×