English

Show that the Matrix, a = ⎡ ⎢ ⎣ 1 0 − 2 − 2 − 1 2 3 4 1 ⎤ ⎥ ⎦ Satisfies the Equation, a 3 − a 2 − 3 a − I 3 = O . Hence, Find A−1. - Mathematics

Advertisements
Advertisements

Question

Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.

Solution

\[\text{ We have, }A = \begin{bmatrix} 1 & 0 &- 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix}| 1 & 0 &- 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{vmatrix} = 1\left( - 9 \right) + 0 - 2\left( - 8 \right) = - 9 + 16 = 7 \]
\[\text{ Since, }\left| A \right| \neq 0\]
\[\text{ Hence, }A^{- 1}\text{ exists .} \]
Now,
\[ A^2 = \begin{bmatrix} 1 & 0 & - 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 &- 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 0 - 6 & 0 + 0 - 8 & - 2 + 0 - 2\\ - 2 + 2 + 6 & 0 + 1 + 8 & 4 - 2 + 2\\ 3 - 8 + 3 & 0 - 4 + 4 & - 6 + 8 + 1 \end{bmatrix} = \begin{bmatrix} - 5 & - 8 & - 4\\ 6 & 9 & 4\\ - 2 & 0 & 3 \end{bmatrix}\]
\[ A^3 = A^2 . A = \begin{bmatrix} - 5 & - 8 & - 4\\ 6 & 9 & 4\\ - 2 & 0 & 3 \end{bmatrix}\begin{bmatrix} 1 & 0 & - 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} - 5 + 16 - 12 & 0 + 8 - 16 & 10 - 16 - 4\\ 6 - 18 + 12 & 0 - 9 + 16 & - 12 + 18 + 4\\ - 2 + 0 + 9 & 0 + 0 + 12 & 4 + 0 + 3 \end{bmatrix} = \begin{bmatrix} - 1 & - 8 & - 10\\ 0 & 7 & 10\\ 7 & 12 & 7 \end{bmatrix} \]
\[\text{ Now, }A^3 - A^2 - 3A - I_3 = \begin{bmatrix} - 1 & - 8 & - 10\\ 0 & 7 & 10\\ 7 & 12 & 7 \end{bmatrix} - \begin{bmatrix} - 5 & - 8 & - 4\\ 6 & 9 & 4\\ - 2 & 0 & 3 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 & - 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} - 1 + 5 - 3 - 1 & - 8 + 8 + 0 + 0 & - 10 + 4 + 6 - 0\\0 - 6 + 6 - 0 & 7 - 9 + 3 - 1 & 10 - 4 - 6 - 0\\ 7 + 2 - 9 - 0 & 12 + 0 - 12 - 0 & 7 - 3 - 3 - 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} = O\]
Hence proved . 
\[\text{ Now,} A^3 - A^2 - 3A - I_3 = O (\text{ Null matrix })\]
\[ \Rightarrow A^{- 1} \left( A^3 - A^2 - 3A - I_3 \right) = A^{- 1} O (\text{ Pre - multiplying by A}^{- 1} )\]
\[ \Rightarrow A^2 - A^1 - 3 I_3 = A^{- 1} \]
\[ \Rightarrow \begin{bmatrix} - 5 & - 8 & - 4\\ 6 & 9 & 4\\ - 2 & 0 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 & - 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = A^{- 1} \]
\[ \Rightarrow \begin{bmatrix} - 5 - 1 - 3 & - 8 - 0 - 0 & - 4 + 2 + 0\\ 6 + 2 + 0 & 9 + 1 - 3 & 4 - 2\\- 2 - 3 - 0 & 0 - 4 - 0 & 3 - 1 - 3 \end{bmatrix} = \begin{bmatrix} - 9 & - 8 & - 2\\ 8 & 7 &2\\ - 5 & - 4 & - 1 \end{bmatrix} = A^{- 1} \]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} - 9 & - 8 & - 2\\ 8 & 7 & 2\\ - 5 & - 4 & - 1 \end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 25 | Page 24

RELATED QUESTIONS

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.


Find the inverse of the matrices (if it exists).

`[(1,0,0),(3,3,0),(5,2,-1)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix:

\[\begin{bmatrix}2 & 5 \\ - 3 & 1\end{bmatrix}\]

Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]


Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


If A is a singular matrix, then adj A is ______.


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

|A–1| ≠ |A|–1, where A is non-singular matrix.


|adj. A| = |A|2, where A is a square matrix of order two.


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


To raise money for an orphanage, students of three schools A, B and C organised an exhibition in their residential colony, where they sold paper bags, scrap books and pastel sheets made by using recycled paper. Student of school A sold 30 paper bags, 20 scrap books and 10 pastel sheets and raised ₹ 410. Student of school B sold 20 paper bags, 10 scrap books and 20 pastel sheets and raised ₹ 290. Student of school C sold 20 paper bags, 20 scrap books and 20 pastel sheets and raised ₹ 440.

Answer the following question:

  1. Translate the problem into a system of equations.
  2. Solve the system of equation by using matrix method.
  3. Hence, find the cost of one paper bag, one scrap book and one pastel sheet.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×