English

If a = ⎡ ⎢ ⎣ 2 − 1 1 − 1 2 − 1 1 − 1 2 ⎤ ⎥ ⎦ . Verify that a 3 − 6 a 2 + 9 a − 4 I = O and Hence Find A−1. - Mathematics

Advertisements
Advertisements

Question

If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

Solution

\[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{vmatrix} = 2 \times \left( 4 - 1 \right) + 1\left( - 2 + 1 \right) + 1\left( 1 - 2 \right) = 6 - 1 - 1 = 4 \]
\[\text{ Since, }\left| A \right| \neq 0 \]
\[\text{ Hence, }A^{- 1}\text{ exists }. \]
Now,
\[ A^2 = \begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix}\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 + 1 + 1 & - 2 - 2 - 1 & 2 + 1 + 2\\ - 2 - 2 - 1 & 1 + 4 + 1 & - 1 - 2 - 2\\ 2 + 1 + 2 & - 1 - 2 - 2 & 1 + 1 + 4 \end{bmatrix} = \begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix} \]
\[ A^3 = A^2 . A = \begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix}\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} = \begin{bmatrix} 12 + 5 + 5 & - 6 - 10 - 5 & 6 + 5 + 10\\ - 10 - 6 - 5 & 5 + 12 + 5 & - 5 - 6 - 10\\ 10 + 5 + 6 & - 5 - 10 - 6 & 5 + 5 + 12 \end{bmatrix} = \begin{bmatrix} 22 & - 21 & 21\\ - 21 & 22 & - 21\\ 21 &- 21 & 22 \end{bmatrix} \]
\[\text{ Now, }A^3 - 6 A^2 + 9A - 4I = \begin{bmatrix} 22 & - 21 & 21\\ - 21 & 22 & - 21\\ 21 & - 21 & 22 \end{bmatrix} - 6\begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix} + 9\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \]
\[ = \begin{bmatrix} 22 - 36 + 18 - 4 & - 21 + 30 - 9 - 0 & 21 - 30 + 9 - 0\\ - 21 + 30 - 9 - 0 & 22 - 36 + 18 - 4 & - 21 + 30 - 9 - 0\\ 21 - 30 + 9 - 0 & - 21 + 30 - 9 - 0 & 22 - 36 + 18 - 4 \end{bmatrix} \]
\[ = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} = O [\text{ Null matrix }]\]
Hence proved . 
\[\text{ Now,} A^3 - 6 A^2 + 9A - 4I = O\]
\[ \Rightarrow A^{- 1} \times \left( A^3 - 6 A^2 + 9A - 4I \right) = A^{- 1} \times O \]
\[ \Rightarrow A^2 - 6A + 9I - 4 A^{- 1} = O\]
\[ \Rightarrow 4 A^{- 1} = A^2 - 6A + 9I\]
\[ \Rightarrow 4 A^{- 1} = \begin{bmatrix} 6 & - 5 & 5\\ - 5 & 6 & - 5\\ 5 & - 5 & 6 \end{bmatrix} - 6\begin{bmatrix} 2 & - 1 & 1\\ - 1 & 2 & - 1\\ 1 & - 1 & 2 \end{bmatrix} + 9\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}\]
\[ \Rightarrow 4 A^{- 1} = \begin{bmatrix} 6 - 12 + 9 & - 5 + 6 + 0 & 5 - 6 + 0\\ - 5 + 6 + 0 & 6 - 12 + 9 & - 5 + 6 + 0\\ 5 - 6 + 0 & - 5 + 6 + 0 & 6 - 12 + 9 \end{bmatrix} \]
\[ \Rightarrow 4 A^{- 1} = \begin{bmatrix} 3 & 1 & - 1\\ 1 & 3 & 1\\ - 1 & 1 & 3 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{4}\begin{bmatrix} 3 & 1 & - 1\\ 1 & 3 & 1\\ - 1 & 1 & 3 \end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 26 | Page 24

RELATED QUESTIONS

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.


Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.


Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & - 1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & - 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix.

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.


If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]


If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.


If A is an invertible matrix of order 3, then which of the following is not true ?


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If for the matrix A, A3 = I, then A−1 = _____________ .


The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .


Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.


A square matrix A is invertible if det A is equal to ____________.


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×