Advertisements
Advertisements
Question
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
Solution
\[A = \begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix}1 & 3 & - 2 \\ 0 & 9 & - 7 \\ 0 & - 5 & 4\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 3 & 1 & 0 \\ - 2 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 + 3 R_1\text{ and }R_3 \to R_3 - 2 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 3 & - 2 \\ 0 & 1 & - \frac{7}{9} \\ 0 & - 5 & 4\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{9} & 0 \\ - 2 & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to \frac{1}{9} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{1}{3} \\ 0 & 1 & - \frac{7}{9} \\ 0 & 0 & \frac{1}{9}\end{bmatrix} = \begin{bmatrix}0 & - \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{9} & 0 \\ - \frac{1}{3} & \frac{5}{9} & 1\end{bmatrix} A \left[\text{ Applying }R_1 \to R_1 - 3 R_2\text{ and }R_3 \to R_3 + 5 R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & \frac{1}{3} \\ 0 & 1 & - \frac{7}{9} \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}0 & - \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{9} & 0 \\ - 3 & 5 & 9\end{bmatrix} A \left[\text{ Applying }R_3 \to 9 R_3 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}1 & - 2 & - 3 \\ - 2 & 4 & 7 \\ - 3 & 5 & 9\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 + \frac{7}{9} R_3\text{ and }R_1 \to R_1 - \frac{1}{3} R_3 \right]\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix}1 & - 2 & - 3 \\ - 2 & 4 & 7 \\ - 3 & 5 & 9\end{bmatrix} \]
APPEARS IN
RELATED QUESTIONS
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A is a singular matrix, then adj A is ______.
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
If A, B be two square matrices such that |AB| = O, then ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.
If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.