English

Find the Inverse by Using Elementary Row Transformations: ⎡ ⎢ ⎣ 2 − 1 3 1 2 4 3 1 1 ⎤ ⎥ ⎦ - Mathematics

Advertisements
Advertisements

Question

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]

Sum

Solution

\[A = \begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix}1 & - \frac{1}{2} & \frac{3}{2} \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A \left[\text{ Applying }R_1 \to \frac{1}{2} R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - \frac{1}{2} & \frac{3}{2} \\ 0 & \frac{5}{2} & \frac{5}{2} \\ 0 & \frac{5}{2} & \frac{- 7}{2}\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & 0 & 0 \\ - \frac{1}{2} & 1 & 0 \\ - \frac{3}{2} & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - 3 R_1 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & - \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 1 \\ 0 & \frac{5}{2} & \frac{- 7}{2}\end{bmatrix} = \begin{bmatrix}\frac{1}{2} & 0 & 0 \\ - \frac{1}{5} & \frac{2}{5} & 0 \\ - \frac{3}{2} & 0 & 1\end{bmatrix} A \left[\text{ Applying }R_2 \to \frac{2}{5} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & - 6\end{bmatrix} = \begin{bmatrix}\frac{2}{5} & \frac{1}{5} & 0 \\ - \frac{1}{5} & \frac{2}{5} & 0 \\ - 1 & - 1 & 1\end{bmatrix}A \left[\text{ Applying }R_1 \to R_1 + \frac{1}{2} R_2\text{ and }R_3 \to R_3 - \frac{5}{2} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{2}{5} & \frac{1}{5} & 0 \\ - \frac{1}{5} & \frac{2}{5} & 0 \\ \frac{1}{6} & \frac{1}{6} & - \frac{1}{6}\end{bmatrix} A \left[\text{ Applying }R_3 \to - \frac{1}{6} R_2 \right]\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} = \begin{bmatrix}\frac{1}{15} & \frac{- 2}{15} & \frac{1}{3} \\ - \frac{11}{30} & \frac{7}{30} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & - \frac{1}{6}\end{bmatrix} A \left[\text{ Applying }R_2 \to R_2 - R_3\text{ and }R_1 \to R_1 - 2 R_3 \right]\]
\[ \Rightarrow A^{- 1} = - \frac{1}{30}\begin{bmatrix}- 2 & 4 & - 10 \\ 11 & - 7 & - 5 \\ - 5 & - 5 & 5\end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.2 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.2 | Q 11 | Page 34

RELATED QUESTIONS

Verify A (adj A) = (adj A) A = |A|I.

`[(1,-1,2),(3,0,-2),(1,0,3)]`


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & - 1 & 3 \\ 4 & 2 & 5 \\ 0 & 4 & - 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 


If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]


If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]


Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\]  and hence show that \[A\left( adj A \right) = \left| A \right| I_3\]. 


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


If for the matrix A, A3 = I, then A−1 = _____________ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\]  be such that \[A^{- 1} = kA\], then k equals ___________ .


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


If `abs((2"x", -1),(4,2)) = abs ((3,0),(2,1))` then x is ____________.


A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×