Advertisements
Advertisements
Question
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
Solution
\[A = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{vmatrix} = 1\left( 1 - 4 \right) - 2\left( 2 - 4 \right) + 2\left( 4 - 2 \right) = - 3 + 4 + 4 = 5 \]
\[\text{ Since, }\left| A \right| \neq 0\]
Hence, A is invertible .
Now,
\[ A^2 = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 4 + 4 & 2 + 2 + 4 & 2 + 4 + 2\\2 + 2 + 4 & 4 + 1 + 4 & 4 + 2 + 2\\2 + 4 + 2 & 4 + 2 + 2 & 1 + 4 + 4 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8\\8 & 9 & 8\\8 & 8 & 9 \end{bmatrix}\]
\[\text{ Now, }A^2 - 4A - 5I = \begin{bmatrix} 9 & 8 & 8\\8 & 9 & 8\\8 & 8 & 9 \end{bmatrix} - 4\begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} - 5\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 9 - 4 - 5 & 8 - 8 - 0 & 8 - 8 - 0\\8 - 8 - 0 & 9 - 4 - 5 & 8 - 8 - 0\\8 - 8 - 0 & 8 - 8 - 0 & 9 - 4 - 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix} = O \]
\[ \Rightarrow A^2 - 4A - 5I = O [\text{ Proved }]\]
\[\text{ Again,} A^2 - 4A - 5I = O\]
\[ \Rightarrow A^{- 1} \left( A^2 - 4A - 5I \right) = A^{- 1} O [\text{ Pre - multiplying with }A^{- 1} ]\]
\[ \Rightarrow A^{- 1} A^2 - 4 A^{- 1} A - 5 A^{- 1} = O\]
\[ \Rightarrow A - 4I = 5 A^{- 1} \]
\[ \Rightarrow 5 A^{- 1} = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 - 4 & 2 - 0 & 2 - 0\\2 - 0 & 1 - 4 & 2 - 0\\2 - 0 & 2 - 0 & 1 - 4 \end{bmatrix} = \begin{bmatrix} - 3 & 2 & 2\\ 2 & - 3 & 2\\ 2 & 2 & - 3 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{5}\begin{bmatrix} - 3 & 2 & 2\\ 2 & - 3 & 2\\ 2 & 2 & - 3 \end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
For the matrix
If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
A square matrix A is invertible if det A is equal to ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.