English

If a = ⎡ ⎢ ⎣ 1 2 2 2 1 2 2 2 1 ⎤ ⎥ ⎦ , Find a − 1 and Prove that a 2 − 4 a − 5 I = O - Mathematics

Advertisements
Advertisements

Question

If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]

Solution

\[A = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{vmatrix} = 1\left( 1 - 4 \right) - 2\left( 2 - 4 \right) + 2\left( 4 - 2 \right) = - 3 + 4 + 4 = 5 \]
\[\text{ Since, }\left| A \right| \neq 0\]
Hence, A is invertible .
Now, 
\[ A^2 = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 4 + 4 & 2 + 2 + 4 & 2 + 4 + 2\\2 + 2 + 4 & 4 + 1 + 4 & 4 + 2 + 2\\2 + 4 + 2 & 4 + 2 + 2 & 1 + 4 + 4 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8\\8 & 9 & 8\\8 & 8 & 9 \end{bmatrix}\]
\[\text{ Now, }A^2 - 4A - 5I = \begin{bmatrix} 9 & 8 & 8\\8 & 9 & 8\\8 & 8 & 9 \end{bmatrix} - 4\begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} - 5\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 9 - 4 - 5 & 8 - 8 - 0 & 8 - 8 - 0\\8 - 8 - 0 & 9 - 4 - 5 & 8 - 8 - 0\\8 - 8 - 0 & 8 - 8 - 0 & 9 - 4 - 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix} = O \]
\[ \Rightarrow A^2 - 4A - 5I = O [\text{ Proved }]\]
\[\text{ Again,} A^2 - 4A - 5I = O\]
\[ \Rightarrow A^{- 1} \left( A^2 - 4A - 5I \right) = A^{- 1} O [\text{ Pre - multiplying with }A^{- 1} ]\]
\[ \Rightarrow A^{- 1} A^2 - 4 A^{- 1} A - 5 A^{- 1} = O\]
\[ \Rightarrow A - 4I = 5 A^{- 1} \]
\[ \Rightarrow 5 A^{- 1} = \begin{bmatrix} 1 & 2 & 2\\2 & 1 & 2\\2 & 2 & 1 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 - 4 & 2 - 0 & 2 - 0\\2 - 0 & 1 - 4 & 2 - 0\\2 - 0 & 2 - 0 & 1 - 4 \end{bmatrix} = \begin{bmatrix} - 3 & 2 & 2\\ 2 & - 3 & 2\\ 2 & 2 & - 3 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{5}\begin{bmatrix} - 3 & 2 & 2\\ 2 & - 3 & 2\\ 2 & 2 & - 3 \end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 34 | Page 24

RELATED QUESTIONS

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

For the matrix 

\[A = \begin{bmatrix}1 & - 1 & 1 \\ 2 & 3 & 0 \\ 18 & 2 & 10\end{bmatrix}\] , show that A (adj A) = O.

If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\]  then find the value of k.


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If for the matrix A, A3 = I, then A−1 = _____________ .


The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and  second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.

 

If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


A square matrix A is invertible if det A is equal to ____________.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`


Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×