Advertisements
Advertisements
Question
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
Solution
Let x , y and z be the investments at the rates of interest of 10%, 12% and 15% per annum respectively.
Total investment = Rs 10,000 \[\Rightarrow x + y + z = 10, 000\]
\[\text{ Income from the first investment of Rs }x = Rs\frac{10x}{100} = Rs 0 . 1x\]
\[\text{ Income from the second investment of Rs }x = Rs\frac{12y}{100} = Rs 0 . 12y\]
\[\text{ Income from the third investment of Rs }x = Rs\frac{15z}{100} = Rs 0 . 15z\]
\[ \therefore\text{ Total annual income }= Rs \left( 0 . 1x + 0 . 12y + 0 . 15z \right)\]
\[ \Rightarrow 0 . 1x + 0 . 12y + 0 . 15z = 1310 \left( \because \text{ Total annual income }= Rs 1310 \right)\]
It is given that the combined income from the first two incomes is Rs 190 short of the income from the third .
\[ \therefore 0 . 1x + 0 . 12y = 0 . 15z - 190\]
\[ \Rightarrow - 0 . 1x - 0 . 12y + 0 . 15z = 190\]
Thus, we obtain the following system of simultaneous linear equations:
\[x + y + z = 10000\]
\[0 . 1x + 0 . 12y + 0 . 15z = 1310\]
\[ - 0 . 1x - 0 . 12y + 0 . 15z = 190\]
The given system of equation can be written in matrix form as follows:
\[ \begin{bmatrix}1 & 1 & 1 \\ 0 . 1 & 0 . 12 & 0 . 15 \\ - 0 . 1 & - 0 . 12 & 0 . 15\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}10000 \\ 1310 \\ 190\end{bmatrix}\]
\[AX = B\]
Here,
\[A = \begin{bmatrix}1 & 1 & 1 \\ 0 . 1 & 0 . 12 & 0 . 15 \\ - 0 . 1 & - 0 . 12 & 0 . 15\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}10000 \\ 1310 \\ 190\end{bmatrix}\]
\[\left| A \right|=1 \left( 0 . 15 \times 0 . 12 + 0 . 15 \times 0 . 12 \right) - 1\left( 0 . 15 \times 0 . 1 + 0 . 15 \times 0 . 1 \right) + 1\left( - 0 . 1 \times 0 . 12 + 0 . 12 \times 0 . 1 \right)\]
\[ = 0 . 036 - 0 . 03 + 0\]
\[ = 0 . 006\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 . 12 & 0 . 15 \\ - 0 . 12 & 0 . 15\end{vmatrix} = 0 . 036, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}0 . 1 & 0 . 15 \\ - 0 . 1 & 0 . 15\end{vmatrix} = - 0 . 03, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}0 . 1 & 0 . 12 \\ - 0 . 1 & - 0 . 12\end{vmatrix} = 0\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ - 0 . 12 & 0 . 15\end{vmatrix} = - 0 . 27, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ - 0 . 1 & 0 . 15\end{vmatrix} = 0 . 25, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ - 0 . 1 & - 0 . 12\end{vmatrix} = 0 . 02\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ 0 . 12 & 0 . 15\end{vmatrix} = 0 . 03, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 0 . 1 & 0 . 15\end{vmatrix} = - 0 . 05, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 0 . 1 & 0 . 12\end{vmatrix} = 0 . 02\]
\[adj A = \begin{bmatrix}0 . 036 & - 0 . 03 & 0 \\ - 0 . 27 & 0 . 25 & 0 . 02 \\ 0 . 03 & - 0 . 05 & 0 . 02\end{bmatrix}^T \]
\[ = \begin{bmatrix}0 . 036 & - 0 . 27 & 0 . 03 \\ - 0 . 03 & 0 . 25 & - 0 . 05 \\ 0 & 0 . 02 & 0 . 02\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{0 . 006}\begin{bmatrix}0 . 036 & - 0 . 27 & 0 . 03 \\ - 0 . 03 & 0 . 25 & - 0 . 05 \\ 0 & 0 . 02 & 0 . 02\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{0 . 006}\begin{bmatrix}0 . 036 & - 0 . 27 & 0 . 03 \\ - 0 . 03 & 0 . 25 & - 0 . 05 \\ 0 & 0 . 02 & 0 . 02\end{bmatrix}\begin{bmatrix}10000 \\ 1310 \\ 190\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{0 . 006}\begin{bmatrix}360 - 353 . 7 + 5 . 7 \\ - 300 + 327 . 5 - 9 . 5 \\ 0 + 26 . 2 + 3 . 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1000}{6}\begin{bmatrix}12 \\ 18 \\ 30\end{bmatrix}\]
\[ \therefore x = 2000, y = 3000\text{ and }z = 5000\]
Thus, the three investments are of Rs 2000, Rs 3000 and Rs 5000, respectively .
APPEARS IN
RELATED QUESTIONS
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
For the matrix
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If A is an invertible matrix, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If A is a singular matrix, then adj A is ______.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If A, B be two square matrices such that |AB| = O, then ____________.
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
If A = `[(2, -3, 5),(3, 2, -4),(1, 1, -2)]`, find A–1. Use A–1 to solve the following system of equations 2x − 3y + 5z = 11, 3x + 2y – 4z = –5, x + y – 2z = –3
If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.