English

If a = [ 3 − 2 4 − 2 ] , Find the Value of λ So that a 2 = λ a − 2 I . Hence, Find A−1. - Mathematics

Advertisements
Advertisements

Question

If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.

Sum

Solution

\[A = \begin{bmatrix} 3 & - 2 \\4 & - 2 \end{bmatrix}\]
\[ \therefore A^2 = \begin{bmatrix} 1 & - 2\\4 & - 4 \end{bmatrix}\]
Given: 
\[ A^2 = \lambda A - 2I . . . \left( 1 \right)\]
\[ \Rightarrow \begin{bmatrix} 1 & - 2 \\ 4 & - 4 \end{bmatrix} = \lambda\begin{bmatrix} 3 & - 2 \\ 4 & - 2 \end{bmatrix} - 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix} 1 & - 2\\4 & - 4 \end{bmatrix} = \begin{bmatrix} 3\lambda & - 2\lambda\\4\lambda & - 2\lambda \end{bmatrix} - \begin{bmatrix} 2 & 0\\0 & 2 \end{bmatrix} \]
\[ \Rightarrow \begin{bmatrix} 1 & - 2\\4 & - 4 \end{bmatrix} = \begin{bmatrix} 3\lambda - 2 & - 2\lambda\\4\lambda & - 2\lambda - 2 \end{bmatrix}\]
On equating corresponding terms, we get
\[ - 2\lambda = - 2\]
\[ \Rightarrow \lambda = 1 \]
\[\text{ On substituting } \lambda = 1\text{ in }\left( 1 \right),\text{ we get}\]
\[ A^2 = A - 2I \]
\[ \Rightarrow A^2 - A = - 2I\]
\[ \Rightarrow A - A^2 = 2I\]
\[ \Rightarrow A^{- 1} \left( A - A^2 \right) = A^{- 1} \times 2I \left(\text{ Pre - multiplying both sides with }A^{- 1} \right)\]
\[ \Rightarrow I - A = 2 A^{- 1} \]
\[2 A^{- 1} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & - 2\\4 & - 2 \end{bmatrix} = \begin{bmatrix} 1 - 3 & 0 + 2\\0 - 4 & 1 + 2 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{2}\begin{bmatrix} - 2 & 2\\ - 4 & 3 \end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 21 | Page 24

RELATED QUESTIONS

Verify A (adj A) = (adj A) A = |A|I.

`[(1,-1,2),(3,0,-2),(1,0,3)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(3,3,0),(5,2,-1)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix:

\[\begin{bmatrix}2 & 5 \\ - 3 & 1\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]


Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

If  \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that 

\[A^2 = xA + yI = O\] . Hence, evaluate A−1.

Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


If A is an invertible matrix, then which of the following is not true ?


If for the matrix A, A3 = I, then A−1 = _____________ .


If \[A^2 - A + I = 0\], then the inverse of A is __________ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3


Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


(A3)–1 = (A–1)3, where A is a square matrix and |A| ≠ 0.


|A–1| ≠ |A|–1, where A is non-singular matrix.


|adj. A| = |A|2, where A is a square matrix of order two.


Find the adjoint of the matrix A `= [(1,2),(3,4)].`


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos"  2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×