Advertisements
Advertisements
Question
Show that
Solution
\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\]
\[ \therefore A^2 = \begin{bmatrix}74 & - 20 \\ - 8 & 26\end{bmatrix}\]
and
\[ A^2 + 4A - 42I = \begin{bmatrix}74 & - 20 \\ - 8 & 26\end{bmatrix} + \begin{bmatrix}- 32 & 20 \\ 8 & 16\end{bmatrix} - \begin{bmatrix}42 & 0 \\ 0 & 42\end{bmatrix}\]
\[ \Rightarrow A^2 + 4A - 42I = \begin{bmatrix}74 - 32 - 42 & - 20 + 20 - 0 \\ - 8 + 8 - 0 & 26 + 16 - 42\end{bmatrix} = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} = O\]
Now,
\[ A^2 + 4A - 42I = 0\]
\[ \Rightarrow A^2 + 4A = 42I\]
\[ \Rightarrow A^{- 1} A^2 + 4 A^{- 1} A = 42I A^{- 1} \left[\text{ Pre - multiplying both sides by }A^{- 1} \right]\]
\[ \Rightarrow A + 4I = 42 A^{- 1} \]
\[ \Rightarrow A^{- 1} = \frac{1}{42}\left( A + 4I \right)\]
\[ \Rightarrow A^{- 1} = \frac{1}{42}\left\{ \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix} + \begin{bmatrix}4 & 0 \\ 0 & 4\end{bmatrix} \right\} = \frac{1}{42}\begin{bmatrix}- 4 & 5 \\ 2 & 8\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
If \[A = \begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\] , find \[A^{- 1}\] and prove that \[A^2 - 4A - 5I = O\]
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If A is an invertible matrix, then which of the following is not true ?
If A is an invertible matrix of order 3, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
The matrix \[\begin{bmatrix}5 & 10 & 3 \\ - 2 & - 4 & 6 \\ - 1 & - 2 & b\end{bmatrix}\] is a singular matrix, if the value of b is _____________ .
Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A and B are invertible matrices, then which of the following is not correct?
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
If A, B be two square matrices such that |AB| = O, then ____________.
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.