Advertisements
Advertisements
Question
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
Solution
A ` = [(1,0,0),(3,3,0),(5,2,-1)]`
|A| = `|(1,0,0),(3,3,0),(5,2,-1)|`
= - 1[- 3 - 0]
= 1 × (- 3)
= - 3
`"A"_11 = (- 1)^(1 + 1) |(3,0),(2,-1)| = (- 1)^2 [- 3 - 0]`
`= 1 xx (- 3) = - 3`
`"A"_12 = (- 1)^(1 + 2) |(3,0),(5,-1)| = (- 1)^3 [- 3 - 0]`
`= - 1 xx (- 3) = 3`
`"A"_13 = (- 1)^(1 + 3) |(3,3),(5,2)| = (- 1)^4 [6 - 15]`
`= 1 xx (- 9) = - 9`
`"A"_21 = (- 1)^(2 + 1) |(0,0),(2,-1)| = (- 1)^3 [0 - 0] = 0`
`"A"_22 = (- 1)^(2 + 2) |(1,0),(5,-1)| = (- 1)^4 [- 1 - 0]`
`= 1 xx (- 1) = - 1`
`"A"_23 = (- 1)^(2 + 3) |(1,0),(5,2)| = (- 1)^5 [2 - 0]`
`= - 1 xx 2 = - 2`
`"A"_31 = (- 1)^(3 + 1) |(0,0),(3,0)| = (- 1)^4 [0 - 0]` = 0
`"A"_32 = (- 1)^(3 + 2) |(1,0),(3,3)| = (- 1)^5 [0 - 0]` = 0
`"A"_33 = (- 1)^(3 + 3) |(1,0),(3,3)| = (- 1)^6 [3 - 0] = 1 xx 3 = 3`
∴ adj A = `[(-3,3,-9),(0,-1,-2),(0,0,3)] = [(-3,0,0),(3,-1,0),(-9,-2,3)]`
`"A"^-1 = 1/abs "A" ("adjA")`
`= 1/abs "A" [("A"_11,"A"_21,"A"_31),("A"_12,"A"_22,"A"_32),("A"_13,"A"_23,"A"_33)]`
`1/-3 [(-3,0,0),(3,-1,0),(-9,-2,3)]`
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
For the matrix
Find the inverse of the following matrix.
\[\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{bmatrix}\]
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
Given \[A = \begin{bmatrix}5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{bmatrix}, B^{- 1} = \begin{bmatrix}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{bmatrix}\] . Compute (AB)−1.
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
|adj. A| = |A|2, where A is a square matrix of order two.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.
Read the following passage:
Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of ₹160. From the same shop, Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of ₹190. Also, Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of ₹250. |
Based on the above information, answer the following questions:
- Convert the given above situation into a matrix equation of the form AX = B. (1)
- Find | A |. (1)
- Find A–1. (2)
OR
Determine P = A2 – 5A. (2)
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.