Advertisements
Advertisements
Question
If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]
Solution
We know that (AT)−1 = (A−1)T.
\[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}Adj . A\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{vmatrix}\]
\[ = 1\left( - 1 - 8 \right) - 2\left( - 8 + 3 \right)\]
\[ = - 9 + 10\]
\[ = 1\]
\[\text{ Now, to find Adj . A}\]
\[A_{11} = \left( - 1 \right)^{1 + 1} \left( - 9 \right) = - 9\]
\[ A_{12} = \left( - 1 \right)^{1 + 2} \left( 8 \right) = - 8\]
\[ A_{13} = \left( - 1 \right)^{1 + 3} \left( - 2 \right) = - 2\]
\[A_{21} = \left( - 1 \right)^{2 + 1} \left( - 8 \right) = 8\]
\[ A_{22} = \left( - 1 \right)^{2 + 2} \left( 7 \right) = 7 \]
\[ A_{23} = \left( - 1 \right)^{2 + 3} \left( - 2 \right) = 2\]
\[ A_{31} = \left( - 1 \right)^{3 + 1} \left( - 5 \right) = - 5\]
\[ A_{32} = \left( - 1 \right)^{3 + 2} \left( 4 \right) = - 4\]
\[ A_{33} = \left( - 1 \right)^{3 + 3} \left( - 1 \right) = - 1\]
Therefore,
\[Adj . A = \begin{bmatrix}- 9 & 8 & - 5 \\ - 8 & 7 & - 4 \\ - 2 & 2 & - 1\end{bmatrix}\]
Thus,
\[ A^{- 1} = \begin{bmatrix}- 9 & 8 & - 5 \\ - 8 & 7 & - 4 \\ - 2 & 2 & - 1\end{bmatrix} . \]
\[ \left( A^T \right)^{- 1} = \left( A^{- 1} \right)^T \]
\[ = \begin{bmatrix}- 9 & 8 & - 5 \\ - 8 & 7 & - 4 \\ - 2 & 2 & - 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 9 & - 8 & - 2 \\ 8 & 7 & 2 \\ - 5 & - 4 & - 1\end{bmatrix}\]
\[\text{ Hence, }\left( A^T \right)^{- 1} = \begin{bmatrix}- 9 & - 8 & - 2 \\ 8 & 7 & 2 \\ - 5 & - 4 & - 1\end{bmatrix} .\]
APPEARS IN
RELATED QUESTIONS
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix}\] satisfies the equation \[x^2 - 3x - 7 = 0\]. Thus, find A−1.
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] and hence show that \[A\left( adj A \right) = \left| A \right| I_3\].
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]
If A is a singular matrix, then adj A is ______.
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If A is an invertible matrix, then det (A−1) is equal to ____________ .
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
If A and B are invertible matrices, then which of the following is not correct?
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
If A, B be two square matrices such that |AB| = O, then ____________.
A square matrix A is invertible if det A is equal to ____________.
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.