Advertisements
Advertisements
Question
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Solution
\[A = \begin{bmatrix} 3 & 10\\2 7 \end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix} 3 & 10\\2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix} 3 - 2 & 10 - 7\\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 - 0 & 0 - 1\\ 0 & 1 \end{bmatrix} A [\text{ Applying }R_1 \to R_1 - R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 3\\2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 3\\2 - 2 & 7 - 6 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 - 2 &1 + 2 \end{bmatrix} [\text{ Applying }R_2 \to R_2 - 2 R_1 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 3\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\ - 2 & 3 \end{bmatrix} A \]
\[ \Rightarrow \begin{bmatrix} 1 & 3 - 3\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 6 & - 1 - 9\\ - 2 & 3 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - 3 R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & - 10\\ - 2 & 3 \end{bmatrix}A\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} 7 & - 10\\ - 2 & 3 \end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
Given \[A = \begin{bmatrix}2 & - 3 \\ - 4 & 7\end{bmatrix}\], compute A−1 and show that \[2 A^{- 1} = 9I - A .\]
Show that
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
Find the matrix X satisfying the equation
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If A, B are two n × n non-singular matrices, then __________ .
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
|A–1| ≠ |A|–1, where A is non-singular matrix.
A square matrix A is invertible if det A is equal to ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the adjoint of the matrix A, where A `= [(1,2,3),(0,5,0),(2,4,3)]`
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.