मराठी

Find the Inverse by Using Elementary Row Transformations: [ 3 10 2 7 ] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]

बेरीज

उत्तर

\[A = \begin{bmatrix} 3 & 10\\2 7 \end{bmatrix}\]
We know
\[A = IA \]
\[ \Rightarrow \begin{bmatrix} 3 & 10\\2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} A\]
\[ \Rightarrow \begin{bmatrix} 3 - 2 & 10 - 7\\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 - 0 & 0 - 1\\ 0 & 1 \end{bmatrix} A [\text{ Applying }R_1 \to R_1 - R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 3\\2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 3\\2 - 2 & 7 - 6 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 - 2  &1 + 2 \end{bmatrix} [\text{ Applying }R_2 \to R_2 - 2 R_1 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 3\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\ - 2 & 3 \end{bmatrix} A \]
\[ \Rightarrow \begin{bmatrix} 1 & 3 - 3\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 6 & - 1 - 9\\ - 2 & 3 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - 3 R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & - 10\\ - 2 & 3 \end{bmatrix}A\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} 7 & - 10\\ - 2 & 3 \end{bmatrix}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.2 | Q 5 | पृष्ठ ३४

संबंधित प्रश्‍न

Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`


Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.


Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]


\[\text{ If }A^{- 1} = \begin{bmatrix}3 & - 1 & 1 \\ - 15 & 6 & - 5 \\ 5 & - 2 & 2\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 2 & - 2 \\ - 1 & 3 & 0 \\ 0 & - 2 & 1\end{bmatrix},\text{ find }\left( AB \right)^{- 1} .\]

Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\]  and hence show that \[A\left( adj A \right) = \left| A \right| I_3\]. 


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.


If \[A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}, B = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] , find adj (AB).


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If \[A = \begin{bmatrix}2 & - 1 \\ 3 & - 2\end{bmatrix},\text{ then } A^n =\] ______________ .

Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


If A and B are invertible matrices, then which of the following is not correct?


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


If A, B be two square matrices such that |AB| = O, then ____________.


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×