मराठी

Find the Adjoint of the Matrix a = ⎡ ⎢ ⎣ − 1 − 2 − 2 2 1 − 2 2 − 2 1 ⎤ ⎥ ⎦ and Hence Show that a ( a D J a ) = | a | I 3 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the adjoint of the matrix \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\]  and hence show that \[A\left( adj A \right) = \left| A \right| I_3\]. 

उत्तर

\[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\]
\[\text{ Now, to find Adj . A}\]
\[A_{11} = \left( - 1 \right)^{1 + 1} \left( - 3 \right) = - 3\]
\[ A_{12} = \left( - 1 \right)^{1 + 2} \left( 6 \right) = - 6\]
\[ A_{13} = \left( - 1 \right)^{1 + 3} \left( - 6 \right) = - 6\]
\[ A_{21} = \left( - 1 \right)^{2 + 1} \left( - 6 \right) = 6\]
\[ A_{22} = \left( - 1 \right)^{2 + 2} \left( 3 \right) = 3 \]
\[ A_{23} = \left( - 1 \right)^{2 + 3} \left( 6 \right) = - 6\]
\[ A_{31} = \left( - 1 \right)^{3 + 1} \left( 6 \right) = 6\]
\[ A_{32} = \left( - 1 \right)^{3 + 2} \left( 6 \right) = - 6\]
\[ A_{33} = \left( - 1 \right)^{3 + 3} \left( 3 \right) = 3\]
Therefore, 
\[Adj . A = \begin{bmatrix}- 3 & 6 & 6 \\ - 6 & 3 & - 6 \\ - 6 & - 6 & 3\end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{vmatrix}\]
\[ = - 1\left( 1 - 4 \right) - 2\left( - 2 - 4 \right) + 2\left( 4 + 2 \right)\]
\[ = 3 + 12 + 12\]
\[ = 27\]
\[\text{ To show: } A\left( adj A \right) = \left| A \right| I_3 \]
LHS = 
\[\begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\begin{bmatrix}- 3 & 6 & 6 \\ - 6 & 3 & - 6 \\ - 6 & - 6 & 3\end{bmatrix}\]
\[ = \begin{bmatrix}3 + 12 + 12 & - 6 - 6 + 12 & - 6 + 12 - 6 \\ - 6 - 6 + 12 & 12 + 3 + 12 & 12 - 6 - 6 \\ - 6 + 12 - 6 & 12 - 6 - 6 & 12 + 12 + 3\end{bmatrix}\]
\[ = \begin{bmatrix}27 & 0 & 0 \\ 0 & 27 & 0 \\ 0 & 0 & 27\end{bmatrix}\]
\[ = 27 \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} \]
\[ = \left| A \right| I_3 \]
= RHS
\[\text{ Hence, }A\left( adj A \right) = \left| A \right| I_3 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 38 | पृष्ठ २५

संबंधित प्रश्‍न

Find the adjoint of the matrices.

`[(1,2),(3,4)]`


Find the inverse of the matrices (if it exists).

`[(2,-2),(4,3)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


Find the adjoint of the following matrix:

\[\begin{bmatrix}1 & \tan \alpha/2 \\ - \tan \alpha/2 & 1\end{bmatrix}\]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:
\[\begin{bmatrix}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 1 & - 1 \\ 4 & - 3 & 4 \\ 3 & - 3 & 4\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]

Show that

(i) \[\left[ F \left( \alpha \right) \right]^{- 1} = F \left( - \alpha \right)\]
(ii) \[\left[ G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)\]
(iii) \[\left[ F \left( \alpha \right)G \left( \beta \right) \right]^{- 1} = G \left( - \beta \right)F \left( - \alpha \right)\]

Show that

\[A = \begin{bmatrix}- 8 & 5 \\ 2 & 4\end{bmatrix}\] satisfies the equation \[A^2 + 4A - 42I = O\]. Hence, find A−1.

If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

If \[A = \frac{1}{9}\begin{bmatrix}- 8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & - 8 & 4\end{bmatrix}\],
prove that  \[A^{- 1} = A^3\]

Find the matrix X for which 

\[\begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix} X \begin{bmatrix}- 1 & 1 \\ - 2 & 1\end{bmatrix} = \begin{bmatrix}2 & - 1 \\ 0 & 4\end{bmatrix}\]

 


If \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & - 1 & 4 \\ - 2 & 2 & 1\end{bmatrix},\text{ find }\left( A^T \right)^{- 1} .\]


\[\text{ If }A = \begin{bmatrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix},\text{ find }A^{- 1}\text{ and show that }A^{- 1} = \frac{1}{2}\left( A^2 - 3I \right) .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]


Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


If A and B are invertible matrices, which of the following statement is not correct.


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If A, B be two square matrices such that |AB| = O, then ____________.


A square matrix A is invertible if det A is equal to ____________.


Find x, if `[(1,2,"x"),(1,1,1),(2,1,-1)]` is singular


If the equation a(y + z) = x, b(z + x) = y, c(x + y) = z have non-trivial solutions then the value of `1/(1+"a") + 1/(1+"b") + 1/(1+"c")` is ____________.


The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos"  2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.


If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.


A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.

The wood requirements (in tonnes) for each type of furniture are given below:

  Table Chair Cot
Teakwood 2 3 4
Rosewood 1 1 2
Satinwood 3 2 1

It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.

Using the above information, answer the following questions:

  1. Express the data given in the table above in the form of a set of simultaneous equations.
  2. Solve the set of simultaneous equations formed in subpart (i) by matrix method.
  3. Hence, find the number of table(s), chair(s) and cot(s) produced.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×