Advertisements
Advertisements
प्रश्न
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
उत्तर
\[A = \begin{bmatrix} 2 & 5\\1 & 3 \end{bmatrix}\]
We know
\[A = I A\]
\[ \Rightarrow \begin{bmatrix} 2 & 5\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 2 - 1 & 5 - 3\\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 - 0 & 0 - 1 \\ 0 & 1 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 2\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 2\\1 - 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 - 1 & 1 + 1 \end{bmatrix}A [\text{ Applying }R_2 \to R_2 - R_1 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 2\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & - 1 \\ - 1 & 2 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 2 & - 1 - 4 \\ - 1 & 2 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - 2 R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & - 5\\ - 1 & 2 \end{bmatrix}A\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} 3 & - 5\\ - 1 & 2 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(3,3,0),(5,2,-1)]`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix.
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.
If A is an invertible matrix, then which of the following is not true ?
If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .
If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11
If A and B are invertible matrices, then which of the following is not correct?
|A–1| ≠ |A|–1, where A is non-singular matrix.
A square matrix A is invertible if det A is equal to ____________.
The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos" 2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.
If A = [aij] is a square matrix of order 2 such that aij = `{(1"," "when i" ≠ "j"),(0"," "when" "i" = "j"):},` then A2 is ______.
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.