मराठी

Find the Inverse by Using Elementary Row Transformations: [ 2 5 1 3 ] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]

बेरीज

उत्तर

\[A = \begin{bmatrix} 2 & 5\\1 & 3 \end{bmatrix}\]
We know
\[A = I A\]
\[ \Rightarrow \begin{bmatrix} 2 & 5\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 2 - 1 & 5 - 3\\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 - 0 & 0 - 1 \\ 0 & 1 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 2\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 & 1 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 2\\1 - 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 1 & - 1\\0 - 1 & 1 + 1 \end{bmatrix}A [\text{ Applying }R_2 \to R_2 - R_1 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 2\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & - 1 \\ - 1 & 2 \end{bmatrix}A\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 2 & - 1 - 4 \\ - 1 & 2 \end{bmatrix}A [\text{ Applying }R_1 \to R_1 - 2 R_2 ]\]
\[ \Rightarrow \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & - 5\\ - 1 & 2 \end{bmatrix}A\]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} 3 & - 5\\ - 1 & 2 \end{bmatrix}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.2 | Q 4 | पृष्ठ ३४

संबंधित प्रश्‍न

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Verify A (adj A) = (adj A) A = |A|I.

`[(1,-1,2),(3,0,-2),(1,0,3)]`


Find the inverse of the matrices (if it exists).

`[(-1,5),(-3,2)]`


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(3,3,0),(5,2,-1)]`


If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.


If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]`  find  `(AB)^(-1)`


Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Compute the adjoint of the following matrix:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 1 & 1 & 3\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix.

\[\begin{bmatrix}0 & 0 & - 1 \\ 3 & 4 & 5 \\ - 2 & - 4 & - 7\end{bmatrix}\]

If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\text{ and }A \left( adj A = \right)\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}\], then find the value of k.


If A is an invertible matrix, then which of the following is not true ?


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

Find A−1, if \[A = \begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\] . Hence solve the following system of linear equations:x + 2y + 5z = 10, x − y − z = −2, 2x + 3y − z = −11


If A and B are invertible matrices, then which of the following is not correct?


|A–1| ≠ |A|–1, where A is non-singular matrix.


A square matrix A is invertible if det A is equal to ____________.


The value of `abs (("cos" (alpha + beta),-"sin" (alpha + beta),"cos"  2 beta),("sin" alpha, "cos" alpha, "sin" beta),(-"cos" alpha, "sin" alpha, "cos" beta))` is independent of ____________.


If A = [aij] is a square matrix of order 2 such that aij = `{(1","  "when i" ≠ "j"),(0","  "when"  "i" = "j"):},` then A2 is ______.


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×