मराठी

If A = [aij] is a square matrix of order 2 such that aij = ,when ij,whenij{1, when i≠j0, when i=j, then A2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A = [aij] is a square matrix of order 2 such that aij{1, when ij0, when i=j, then A2 is ______.

पर्याय

  • [1010]

  • |1100|

  • |1110|

  • [1001]

MCQ
रिकाम्या जागा भरा

उत्तर

If A = [aij] is a square matrix of order 2 such that aij{1, when ij0, when i=j, then A2 is [1001]̲.

Explanation:

aij = {1,ij0,i=j,

then A = [0110]

and A2 = [0110][0110]=[1001]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 2

संबंधित प्रश्‍न

Find the inverse of the matrices (if it exists).

[10033052-1]


For the matrix A = [3211] find the numbers a and b such that A2 + aA + bI = O.


If A = [2-11-12-11-12] verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


If A-1=[3-11-156-55-22] and B=[12-2-1300-21]  find  (AB)-1


If x, y, z are nonzero real numbers, then the inverse of matrix A = [x000y000z] is ______.


Find the adjoint of the following matrix:

[1tanα/2tanα/21]
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Compute the adjoint of the following matrix:
[122212221]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


If  A=[433101443], show that adj A = A.


Find the inverse of the following matrix.

[211121112]

Find the inverse of the following matrix and verify that A1A=I3

[231341372]

If A=[3242], find the value of λ  so that A2=λA2I. Hence, find A−1.


Find the inverse by using elementary row transformations:

[1635]


Find the inverse by using elementary row transformations:

[2513]


Find the inverse by using elementary row transformations:

[31027]


Find the inverse by using elementary row transformations:

[213124311]


Find the inverse by using elementary row transformations:

[214407327]


If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


If A=[3123], then find |adj A|.


If for the matrix A, A3 = I, then A−1 = _____________ .


If A=[2132], then An= ______________ .

Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


If A and B are invertible matrices, then which of the following is not correct?


(aA)-1=1a A-1, where a is any real number and A is a square matrix.


For what value of x, matrix [6-x43-x1] is a singular matrix?


If |2x-142|=|3021| then x is ____________.


If A = [0100], then A2023 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.