Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
उत्तर
\[A = \begin{bmatrix} 3 & - 2 \\4 & - 2 \end{bmatrix}\]
\[ \therefore A^2 = \begin{bmatrix} 1 & - 2\\4 & - 4 \end{bmatrix}\]
Given:
\[ A^2 = \lambda A - 2I . . . \left( 1 \right)\]
\[ \Rightarrow \begin{bmatrix} 1 & - 2 \\ 4 & - 4 \end{bmatrix} = \lambda\begin{bmatrix} 3 & - 2 \\ 4 & - 2 \end{bmatrix} - 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix} 1 & - 2\\4 & - 4 \end{bmatrix} = \begin{bmatrix} 3\lambda & - 2\lambda\\4\lambda & - 2\lambda \end{bmatrix} - \begin{bmatrix} 2 & 0\\0 & 2 \end{bmatrix} \]
\[ \Rightarrow \begin{bmatrix} 1 & - 2\\4 & - 4 \end{bmatrix} = \begin{bmatrix} 3\lambda - 2 & - 2\lambda\\4\lambda & - 2\lambda - 2 \end{bmatrix}\]
On equating corresponding terms, we get
\[ - 2\lambda = - 2\]
\[ \Rightarrow \lambda = 1 \]
\[\text{ On substituting } \lambda = 1\text{ in }\left( 1 \right),\text{ we get}\]
\[ A^2 = A - 2I \]
\[ \Rightarrow A^2 - A = - 2I\]
\[ \Rightarrow A - A^2 = 2I\]
\[ \Rightarrow A^{- 1} \left( A - A^2 \right) = A^{- 1} \times 2I \left(\text{ Pre - multiplying both sides with }A^{- 1} \right)\]
\[ \Rightarrow I - A = 2 A^{- 1} \]
\[2 A^{- 1} = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & - 2\\4 & - 2 \end{bmatrix} = \begin{bmatrix} 1 - 3 & 0 + 2\\0 - 4 & 1 + 2 \end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{2}\begin{bmatrix} - 2 & 2\\ - 4 & 3 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(2,1,3),(4,-1,0),(-7,2,1)]`
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]` find `(AB)^(-1)`
Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]
Find the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
Let \[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}6 & 7 \\ 8 & 9\end{bmatrix} .\text{ Find }\left( AB \right)^{- 1}\]
Let
\[F \left( \alpha \right) = \begin{bmatrix}\cos \alpha & - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{bmatrix}\text{ and }G\left( \beta \right) = \begin{bmatrix}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ - \sin \beta & 0 & \cos \beta\end{bmatrix}\]
Show that
Show that
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the matrix X satisfying the equation
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 3 & - 2 \\ - 3 & 0 & - 1 \\ 2 & 1 & 0\end{bmatrix}\]
If A is symmetric matrix, write whether AT is symmetric or skew-symmetric.
If A is a non-singular symmetric matrix, write whether A−1 is symmetric or skew-symmetric.
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .
An amount of Rs 10,000 is put into three investments at the rate of 10, 12 and 15% per annum. The combined income is Rs 1310 and the combined income of first and second investment is Rs 190 short of the income from the third. Find the investment in each using matrix method.
|A–1| ≠ |A|–1, where A is non-singular matrix.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
A and B are invertible matrices of the same order such that |(AB)-1| = 8, If |A| = 2, then |B| is ____________.
If A is a square matrix of order 3, |A′| = −3, then |AA′| = ______.
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.